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Nucleic Acid Structure Prediction Including Pseudoknots
Through Direct Enumeration of States: A User’s Guide
to the LandscapeFold Algorithm

Ofer Kimchi, Michael P. Brenner, and Lucy J. Colwell

Abstract

Here we detail the LandscapeFold secondary structure prediction algorithm and how it is used. The
algorithm was previously described and tested in (Kimchi O et al., Biophys J 117(3):520–532, 2019),
though it was not named there. The algorithm directly enumerates all possible secondary structures into
which up to two RNA or single-stranded DNA sequences can fold. It uses a polymer physics model to
estimate the configurational entropy of structures including complex pseudoknots. We detail each of these
steps and ways in which the user can adjust the algorithm as desired. The code is available on the GitHub
repository https://github.com/ofer-kimchi/LandscapeFold.

Key words Pseudoknot, Structure enumeration, Minimum free energy structure, Free energy land-
scape, Polymer physics theory

1 Introduction

Short RNA molecules are ubiquitous in modern biology. In vivo,
small non-coding RNAmolecules are present at high copy numbers
in a wide variety of both eukaryotic and prokaryotic cells [1, 2],
have been implicated in nearly all aspects of biological regulation
[3], and have been found to interact with DNA, mRNA, other
non-coding RNA, and proteins [4, 5]. In vitro, the laboratory
evolution of RNA, especially through SELEX [6–8], has led to an
explosion of applications for short RNA and single-stranded DNA
molecules, due to their ability to tightly and specifically bind to a
remarkable range of target ligands [9].

Where they are known, the functions and interaction partners
of many RNA molecules are determined by their minimum free
energy structures and by their structure landscapes [10–15]. RNA
structures, while fully three-dimensional in nature, can in many
cases be productively defined by a list of the base pairs in the
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Fig. 1 RNA structures and pseudoknots. Three RNA secondary structures are depicted, each in two forms: as a
planar graph (left) where paired nucleotides are nearby, and as a circular diagram (right) where paired
nucleotides are connected by arcs. The planar graphs are colorcoded by whether or not the nucleotide is
paired; the circular diagrams by nucleotide sequence. (a) Non-pseudoknotted structure. An example of a
non-pseudoknotted structure. O’s represent unknown nucleotides and are unpaired. The specific structure
shown is motivated by Ref. [17]. The circular diagrams of structures without pseudoknots do not contain any
intersections in the arcs connecting paired nucleotides. (b) A simple pseudoknot. A simple intramolecular
pseudoknot is depicted. Pseudoknots are defined as non-nested loops, and are easy to visualize in circular
diagrams as intersections in the arcs connecting paired nucleotides. (c) An intermolecular pseudoknot. A
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structure, termed the secondary structure (Fig. 1a). The minimum
free energy structures of short RNA molecules (without
non-nested loops) can be predicted with accuracies of !80%
(depending on the accuracy measure) [16].

1.1 Pseudoknots Are
Not Well-Modeled by
Most Current Tools

Structures including non-nested loops, termed pseudoknots
(Fig. 1b), have remained a longstanding challenge for secondary
structure prediction tools. Pseudoknots make up roughly 1.4% of
base pairs [18] and are overrepresented in functionally important
regions of RNA [19]. For example, pseudoknots make up the
catalytic cores of many ribozymes, and they play a significant role
in programmed ribosomal frameshifting in viruses [20–22]. In
addition to intramolecular pseudoknots, binding between two
complementary strands can often result in pseudoknot-like struc-
tures (Fig. 1c) which also play an essential role in a diverse array of
biological processes [23–28].

Two major challenges arise when predicting RNA structures
including pseudoknots, and many leading secondary structure pre-
diction algorithms (e.g., Refs. [29, 30]) exclude pseudoknots from
their analysis. The first is the challenge of enumerating pseudo-
knotted structures: the enumeration of all pseudoknotted struc-
tures into which an arbitrary sequence can fold is NP-complete
[31]. The second is the challenge of computing the free energy of
pseudoknotted structures, particularly their configurational
entropy. Significant work over the past two decades have led to
major developments on both these fronts. To address the enumer-
ation challenge, dynamic programming approaches have been con-
structed that enable the polynomial-time enumeration of certain
classes of pseudoknotted structures [32–39], and heuristic meth-
ods have been developed to find low (but not necessarily optimal)
free energy structures [40–47]. For the second challenge, physical
models have been developed for the entropies of the simplest
pseudoknots [38–40, 48–50].

1.2 LandscapeFold
Can Predict the
Complete Secondary
Structure Landscape
Including Pseudoknots

LandscapeFold was developed to further address these two chal-
lenges and to enable future research into how properties of nucleic
acids are influenced by their full free energy landscape.

LandscapeFold directly enumerates all possible structures into
which a given sequence can fold (Subheading 3). This approach was
proposed in the early days of RNA structure prediction but quickly

Fig. 1 (continued) simple intermolecular pseudoknot is depicted. Secondary structure prediction algorithms
such as LandscapeFold predict hybridization by concatenating sequences separated by a linker of inert “O”s.
Intramolecular base pairing can easily result in a pseudoknot, as exemplified here. The configurational
entropies of such structures are difficult to predict by traditional means but are readily computable by the
graphical model described in Subheading 4.3
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abandoned in favor of dynamic programming methodologies
[17]. While this complete enumeration is far slower than dynamic
programming approaches for finding the lowest free energy
non-pseudoknotted structures into which a sequence can fold, it
has two particular benefits. First, it is the only way to enumerate all
pseudoknotted structures. Second, it will enable further study of
those RNA properties hypothesized to depend on the complete
landscape rather than only the lowest free energy structures
[12, 13, 15]. In particular, folding and hybridization kinetics are
expected to be highly dependent on properties of the complete
landscape [51].

The other major difference between LandscapeFold and other
structure prediction algorithms is its pseudoknot entropy model.
LandscapeFold uses a graphical formalism based on polymer phys-
ics theory which can calculate the entropy of arbitrarily complex
pseudoknots (Subheading 4.3). Importantly for hybridization pre-
diction, LandscapeFold is able to address pseudoknot-like struc-
tures that emerge in many instances of intermolecular binding, a
simple example of which is shown in Fig. 1c.

In this chapter, we will give a “user’s guide” to the Landscape-
Fold algorithm. Throughout, we will explain the algorithm while
making reference to functions found in its Python implementation.
A MatLab implementation is also available.

All code is available on the GitHub repository https://github.
com/ofer-kimchi/LandscapeFold.

2 Overall Use of the Code

2.1 Simple Example
Usage

For most applications, the LandscapeFold algorithm can be run
using only one line of code. For example, to calculate the free
energy landscape of the short hairpin GCGCAAAUGCGC and
save it to the variable sol, a user can run

sol = LandscapeFold([‘GCGCAAAUGCGC’]).mainLandscapeCalcula-

tion()

The code will automatically plot a diagram of the minimum free
energy (MFE) structure, as well as print the top five lowest free
energy structures, their free energies, and their probabilities.

The variable sol returned by the code above is an object of
class LandscapeFold that defines the free energy landscape of the
inputted RNA sequence. The object is initialized by calling Land-
scapeFold() with desired inputs. The function sol.main-
LandscapeCalculation() then calculates the free energy
landscape given those inputs.

The rest of this chapter will describe many of the sub-functions
that go into the code above, as well as how user inputs can allow for

https://github.com/ofer-kimchi/LandscapeFold
https://github.com/ofer-kimchi/LandscapeFold


Nucleic Acid Structure Prediction Including Pseudoknots Through Direct. . . 53

greater control over the results. Inputs are put into the argument of
LandscapeFold following the list of sequences.

2.2 Python Jargon In this chapter, we will describe several methods of the Landsca-
peFold class by referencing the class instance sol defined above
(e.g., sol.foo()), and to reduce jargon, we will refer to these as
“functions.” Similarly, we will refer to data attributes (e.g., sol.
bar) by their type (e.g., list). We will refer to numpy arrays simply
as arrays. Finally, we will refer to functions outside of the Land-
scapeFold class as, e.g., baz().

2.3 The Sequences

Input
The main input to LandscapeFold, sequences, is a list of up to
two sequences. Each sequence is a string comprised of G’s, C’s, A’s,
and either T’s or U’s depending on if the string is RNA or single-
stranded DNA. Other characters are treated as unknown nucleo-
tides, “O”s, and are not allowed to base pair.

Whether each sequence should be treated as RNA or DNA is
specified by the input DNA. DNA is a list of at least the same length as
sequences, and for each sequence is True if the sequence is DNA,
and False if RNA. LandscapeFold attempts to correct errors in
this specification: if the string contains U’s but no T’s, Landscape-
Fold assumes the sequence is RNA; if it contains T’s but no U’s, it
assumes DNA. Within the LandscapeFold algorithm, DNA and
RNA sequences differ in two major ways. First, while RNA/RNA
G-U pairs are allowed, DNA/RNA G-U pairs, RNA/DNA G-T
pairs, and DNA/DNAG-T pairs are all disallowed. Second, the free
energies of RNA and DNA are parameterized differently (see Sub-
heading 4.2). Aside from these differences, sequences are treated
equivalently by the algorithm regardless of whether they represent
RNA or DNA. In this chapter, we will refer to an arbitrary sequence
as “RNA” since single-stranded RNA structure prediction is more
common than DNA; however, everything we discuss here will be
equally applicable for RNA and DNA.

3 Enumerating the Complete Free Energy Landscape

For short enough RNAmolecules, the complete enumeration of all
possible secondary structures is possible. The LandscapeFold algo-
rithm uses a secondary structure enumeration technique developed
by Pipas and McMahon in the 1970s to completely enumerate all
secondary structures into which a primary sequence can fold
[17]. The enumeration technique is broken up into two
sub-functions, which Pipas and McMahon called START and
PERMU. The START function enumerates all possible stems the
sequence can form, where a stem is defined as a sequence of
consecutive base pairs. PERMU seeks all realizable combinations
of these stems that can coexist in the same structure.
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Table 1
The main input parameters to the LandscapeFold algorithm affecting the enumeration procedure

Parameter Type Description Default

sequences List of strings A list of sequences (up to two) N/A

DNA List of Booleans For each sequence, whether it is a
sequence of DNA (True) or RNA
(False)

[False,
False]

minBPInStem Positive integer Minimum length of a stem 3

allowIntramolecular
Pseudoknots

Boolean Whether to enumerate structures with
intramolecular pseudoknots

True

allowIntermolecular
Pseudoknots

Boolean Whether to enumerate structures with
intermolecular pseudoknots

True

substems Non-negative
integer or “all”

Determines the length of substems to
consider

“all”

frozenBPs n ×2 nested list
of integers

List of base pairs that should be present
in all structures returned

empty list

minNtsInHairpin Positive integer Minimum number of nucleotides in a
hairpin

3

onlyAllowSubsets
OfLongestStems

Boolean Whether to only consider the longest
possible stem and its subsets

False

onlyConsiderSubstems
FromEdges

Boolean Whether to disallow subsets of stems
which do not include either end of
the full stem

False

onlyConsider
BondedStrands

Boolean Whether to only include structures
with at least one intermolecular base
pair

False

The main input parameters to the algorithm affecting the
enumeration procedure are given in Table 1.

3.1 The START
Function

In order to enumerate all secondary structures, we first enumerate
all possible stems that can be formed by the sequence. A stem is a set
of consecutive base pairs {(i, j), (i+ 1, j-1), ..., (i +n, j-n)}.

3.1.1 Determining

Nucleotide

Complementarity

Within LandscapeFold, the nucleotide sequence is numbered from
0 to N-1 from the 5′ end, where N is the sequence length. We
define anN ×N symmetric matrix Bwhich describes which nucleo-
tides can bind to each other: Bi,j=1 if nucleotides i and j can bind
to make base pair i " j and 0 otherwise. Defining rA as an RNA
adenine, and dA as a DNA adenine, etc. binding is allowed for pairs
in the set

fðrA,rU Þ, ðrA,dT Þ, ðrC,rGÞ, ðrC,dGÞ, ðrG,rU Þ, ðrG,dCÞ,
ðrU ,dAÞ, ðdA,dT Þ, ðdC ,dGÞg:

The user can also directly input B using the allowedBPs input.
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3.1.2 Enumerating All

Possible Stems

For each nucleotide i, we search for a complementary nucleotide by
traversing the sequence backwards. We check each nucleotide for
complementarity until we reach i+h where h is the minimum hair-
pin length. h can be set by the user with the minNtsInHairpin
input. If a complementary nucleotide j is found, the stem is
extended one nucleotide at a time as long as complementarity is
maintained. Once complementarity is broken or the resulting hair-
pin length of the stem becomes too short, the stem is added to the
list of stems, and we continue searching for the next nucleotide
complementary to i. Following Pipas andMcMahon, we call the list
of stems the S-Table.

Stems are only added if they are longer than the minimum stem
length, which is set by the user with the minBPInStem input (this
parameter was termedm in Ref. [52]). Furthermore, stems are only
considered valid if they do not create a hairpin that is too short; i.e.
they are valid only if j-n > i + n + h where (i, j) is the first base pair
in the stem and n is the length of the stem.

The user can choose to, at this point, remove all stems shorter
than the longest stem found, by setting the input onlyAllowSub-
setsOfLongestStems to True. This is useful in some engineered
systems where only one very long stem is expected to be relevant.

Next, we add all possible truncations of these enumerated
stems (we call these “sub-stems”). A stem of length s has s-n+1
possible sub-stems of length n. By setting the input substems to a
non-negative integer, the user can specify that only sub-stems of
length at least s-substems should be considered. For example, if
substems is zero, no substems will be considered. Setting the
input substems to all is equivalent to setting it to an arbitrarily
large number.

If the user sets the input onlyConsiderSubstemsFro-
mEdges to True, only sub-stems that include one of the two
edges of the stem will be considered, leading to two sub-stems of
each length.

3.1.3 S-Table Storage

and Computation Time

Stems are stored in LandscapeFold in two ways. One, following
Pipas andMcMahon, is as a list of length 2s (where s is the length of
the stem) giving the nucleotide indices of the 5′ strand, followed by
their complement (e.g., [1, 2, 3, 31, 30, 29]). Stems are also
stored in LandscapeFold directly as an s ×2 nested list of base pairs
(e.g., [[1, 31], [2, 30], [3, 29]]). Both of these indicate the
same stem, comprised of three base pairs (where the first base pair is
comprised of nucleotide 1 bound to nucleotide 31, etc.). There are
two versions of the S-Table for the two storage methods: sol.
STableStructure and sol.STableBPs, respectively.

The creation of the S-Table is implemented in the Landscape-
Fold algorithm by the sol.createSTable() function. As a prac-
tical matter, while this function is extremely fast relative to the rest
of the code, the computation time the rest of the code will take can
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be very roughly estimated from the number of stems enumerated,
Nstems. If fewer than 100 stems are enumerated, the code should
take less than a minute to run; if between 100–150, less than an
hour; up to 200, several hours. These times were computed using a
2017 Macbook Pro with 3.1 GHz processor and 16 GB RAM.

3.1.4 Determining the

Compatibility of Stems

Having created the S-Table, we will next enumerate all possible
structures by finding all viable combinations of stems. In order to
determine if two stems can coexist in the same structure, we define
the Nstems ×Nstems symmetric compatibility matrix C, where
Cp,q=1 if a structure could be made with both stems p and q, and
0 otherwise.

There are three reasons Cp,q may be zero. (1) We impose the
constraint that each nucleotide may be paired with, at most, one
other nucleotide by setting Cp,q=0 if stems p and q share at least
one nucleotide. (2) We also set Cp,q=0 if the user inputted False
for the allowIntramolecularPseudoknots or allowInter-
molecularPseudoknots arguments, and stems p and q form an
intramolecular (e.g., Fig. 1b) or intermolecular (e.g., Fig. 1c) pseu-
doknot, respectively. (3) If stems p and q directly follow one
another and are together equivalent to a single longer stem under
consideration, we set Cp,q=0. We set Cq,q=1 for all q.

The user can input a list of base pairs that must be present in
each structure considered by the algorithm using the frozenBPs
argument. For each “frozen” base pair inputted by the user, we
make a list of all stems containing that base pair (these lists are
stored as a nested list in the sol.frozenStems property). Thus,
each possible structure must include one stem from each of these
lists. For each stem, we ensure it is compatible with one element
from each list (i.e., it can coexist along with each of the “frozen”
base pairs); if it is not, we remove the stem from the S-Table.

After making the compatibility matrix C, we have found it
useful to further define three- and four-way compatibility tensors
C3 and C4. These allow us to ignore structures that include higher-
order pseudoknots whose “mininal graphs” (see Subheading 4.3.2)
consist of three or four stems. While our theory for pseudoknot
entropy is valid for these higher-order pseudoknots, the algorithm
does not currently support their entropy calculation. The user can
choose to allow higher-order pseudoknots (though their free
energy calculation will be inaccurate) by setting the consider-
C3andC4 argument to False.

3.2 The PERMU
Function

We are now in a position to enumerate all possible secondary
structures into which the sequence can fold, by identifying all
mutually compatible combinations of stems. Starting from a single
stem s1, we consider subsequent stems s2 and add the first stem for
which Cs1,s2 =1. Then, we repeat the process, adding the first stem
s3> s2 compatible with both s1 and s2 (and, using the C3 tensor,
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compatible with s1 and s2 simultaneously). We continue this process
until we can add no more stems.

At this point, we check if the resulting structure, composed of
M stems, contains all “frozen” base pairs (if any were inputted). If
so, we add it to the list of possible structures. The user can also
specify that structures comprised of fewer than a given number of
stems will not be added with the minNumStemsInStructure
input, which is by default set to zero (to include also the completely
unfolded structure).

If two sequences were input, the user can also choose to only
add structures that include at least one intermolecular stem by
setting the input onlyConsiderBondedStrands to True.

After adding (or not) the resulting structure, we then remove
the last stem added, to obtain the structure composed of stems
s1, s2, ... , sM-1, and continue the process. This algorithm returns all
possible secondary structures resulting from the primary sequence.

The possible structures are stored in the list sol.structures,
which has lengthNstructures. Each element of sol.structures is a
list of stem indices (between 0 and Nstems-1, inclusive) specifying
the stems that comprise that particular structure. Thus, sol.
structures is used in conjunction with the S-Table to determine
the particular base pairs comprising each structure.

4 Performing the Free Energy Calculation

In the terminology of Pipas and McMahon, the process of calculat-
ing the free energy of each structure is termed the CHECK func-
tion. This process is completely parallelizable, though this
parallelizability has not been implemented yet in the Python version
of LandscapeFold (it has in the MATLAB version). Unparallelized,
it is generally significantly slower than the enumeration procedure,
and the loop entropy calculation in particular (Subheading 4.3) is
typically the rate-limiting process.

Each structure into which an RNA sequence can fold has a
corresponding enthalpy ΔH and entropy ΔS. These combine to
give the free energy ΔG:

ΔG =ΔH -TΔS ð1Þ

where T is the temperature in Kelvin. T can be input to Land-
scapeFold using the T argument. By default, LandscapeFold pre-
dicts the structure landscape at 37∘C. In Eq. 1 the Δ’s signify that
these terms are measured with respect to the free chain. In other
words, the empty structure with no base pairs will have all three of
these terms equal to zero.

In equilibrium, the probability of an RNA sequence folding
into a given structure σ with free energy ΔGσ is given by the
Boltzmann factor
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pðσÞ= exp ð- βΔGσÞP
σ ′ exp ð- βGσ ′ Þ

ð2Þ

where β=1/kBT (kB is Boltzmann’s constant). The deno-
minator ensures that the probability distribution is normalized
(∑σp(σ)=1).

There are three steps to performing the calculation in Eq. 1.
First, the free energies of bonds, ΔHstems and ΔSstems, are calculated
using the nearest-neighbor model. Second, the configurational
entropy of the structure,ΔSloops, is calculated. Finally, for structures
that include intermolecular base pairs, penalties ΔHduplex and
ΔSduplex are added. In other words, we assume that:

ΔH =ΔH stems þ ΔH duplex

ΔS =ΔSstems þ ΔS loops þ ΔSduplex
ð3Þ

In Table 2 we enumerate the input parameters that affect the
free energy calculation.

4.1 The Cost of
Intermolecular Pairing

The penalties ΔHduplex and ΔSduplex are the simplest to implement
in LandscapeFold. They are motivated physically by the enthalpic
and entropic costs of two molecules binding (e.g., ion effects, and
the translational and orientational entropies lost upon bimolecular
association). The effective entropy cost is higher for more dilute
solutions (i.e., larger volumes per particle). The free energy cost is
expected to scale logarithmically with the particle masses as well,
though experiments measuring or parameterizing this scaling are
lacking [53]. The dependence of ΔHduplex on the concentration of
sodium in solution has been measured, finding that for lower
sodium concentrations, electrostatic repulsion between the two
strands leads to a higher cost of duplex formation [54]; the effects
of other cations have been similarly studied [55]. The penalties also
have some sequence dependence and likely differ for DNA-DNA,
RNA-RNA, and DNA-RNA duplexes [54, 56–59]. While each of
these effects has been studied in isolation, a comprehensive formal-
ism combining all, or even most, of these effects remains lacking.

4.1.1 Origins of This

Penalty

4.1.2 Estimates for the

Penalty

The free energy cost of association has been estimated in the
literature for DNA-DNA interactions to be 1.90 kcal/mol
þkBT ln u0=uð Þ , where u0=1M is a reference concentration and
u is the actual concentration [60]. However, for some models (i.e.,
those that account for concentration elsewhere), including Land-
scapeFold, this penalty should be considered as independent of
concentration. For such models, a value of 4.09 kcal/mol is used
for the free energy cost of RNA-RNA association [61–63]; 1.96
for the free energy cost of DNA-DNA association [64]; and 3.1 for
the free energy cost of RNA-DNA association [56, 65]. Landscape-
Fold allows the penalties to be user-defined: the input
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Table 2
The main input parameters to the LandscapeFold algorithm affecting the free energy calculation.
*In the current version, only one value for vs can be inputted, even if one sequence is RNA and
the other DNA

Parameters Type Description Default

T float Temperature of the system (in Kelvin) 310.15

duplexPenalties list of two
floats

Enthalpy and entropy penalties to forming
at least one intermolecular base pair
(in units of kcal/mol and kcal/mol K,
respectively)

[3.61,
-0.0015]

concentrations list of two
floats

Concentrations of each strand (in units of
M)

[1,1]

includeTerminal
Mismatches

Boolean Whether to include terminal mismatches True

includeTerminal
AUATPenalties

Boolean Whether to include penalty for A-U, G-U,
or A-T base pair ending a stem

True

includeDanglingEnds Boolean Whether to include dangling ends True

includeFlush
CoaxialStacks

Boolean Whether to include flush coaxial stacks True

considerAllAs
TerminalMismatches

Boolean Whether to treat all nucleotide pairs
following a stem as a terminal mismatch

False

unmatchedBPPenalty Boolean Whether to substitute A for purine and C
for pyrimidine for unpaired
complementary bases

True

unboundButCould
BindPenalties

list of two
floats

Enthalpy and entropy penalties for
unpaired complementary bases

[0,0]

corruptFESeed float Set to zero to use tabulated nearest-
neighbor model parameters; non-zero to
randomly modify those parameters

0

b float The persistence length of single-stranded
RNA (or DNA) in units of nts

0.8/0.33

vs float⋆ Volume within which two nucleotides can
bind in units of nts3

0.02

duplexPenalties tells the algorithm what values to use, in units
of kcal/mol and kcal/mol K (respectively), for ΔHduplex and
ΔSduplex. The defaults correspond to RNA-RNA association penal-
ties [61]. These terms together define a free energy cost to bimo-
lecular association, given by ΔGduplex= ΔHduplex-TΔSduplex.

4.1.3 Details of

LandscapeFold

Implementation

Following Ref. [66], LandscapeFold implements a correction to the
user-input values by subtracting kBT log ðρH 2O=(1 mol/L))≈2.5
kcal/mol from ΔGduplex. This correction leads to ratios of free
energies being treated as ratios of mole fractions as opposed to
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molarities (see footnote 13 of Ref. [66]). The correction can be
ignored by setting the input variable includeRhoH2OCorrec-
tion to False. This correction affects the free energies of the
structures, but not the predicted equilibrium concentrations of
monomers and dimers, since this factor of ρH 2O exactly cancels out
with a similar factor included in the concentration calculation if
includeRhoH2OCorrection is True. See Subheading 5.2.4 for
further discussion.

Practically, these penalties are implemented by keeping track of
intermolecular stems in the list sol.linkedStems. sol.lin-
kedStems is a Boolean array of length Nstems which is True for
stems that define base pairs across strands, and False for the rest.
We also keep track of which structures include at least one stem
from this list in sol.linkedStructures, a similar Boolean array
of length Nstructures. (For simplicity, sol.linkedStructures is
an empty list if only one sequence is inputted, rather than an array
in which every element is False). A penalty of ΔGduplex is intro-
duced for those structures that have at least one intermolecular base
pair, and no penalty is introduced for structures that contain only
intramolecular base pairs.

4.1.4 Symmetry

Penalties

If the two sequences input are identical, then structures with a
2-fold symmetry have an extra free energy penalty of kBT ln 2
[66]. This penalty is effectively taken into account through our
complete enumeration approach: asymmetric structures will be
considered twice, while symmetric structures are considered only
once. Thus, no further penalty need to be applied at this stage.

To illustrate, consider two of the structures that the self-
complementary sequence “GCAGC” can form: one in which the
5′ end of the first strand is bound to the 5′ end of the second; the
other in which the 5′ end of the first strand is bound to the second’s
3′ end. The former structure is enumerated only once. The latter,
however, is enumerated twice: the same structure is considered
again as the structure where the 3′ end of the first strand is bound
to the 5′ end of the second. This differential in the structure
enumeration is a direct result of the symmetry of the former struc-
ture and the asymmetry of the latter, and effectively adds a kBT ln 2
penalty to the former structure compared to the latter.

4.2 The Stem Free
Energy Model

The nearest-neighbor free energy model has shown decades of
success in accurately estimating the free energies of both intra-
and intermolecular bonds of RNA and DNAmolecules. The details
of the model are best described elsewhere [63, 67]. Here we will
give only a brief overview of the model and a guide to how to
modify it within the LandscapeFold algorithm as desired.

4.2.1 The Basic Nearest-

Neighbor Free Energy

Model

The backbone of the nearest-neighbor model is that the
enthalpy and entropy of a stem can be well approximated by
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considering each neighboring base pair independently. For exam-
ple, consider the bottom stem in Fig. 1a:

5′ C U C C G G U 3′

3′ C A G G C C U 5′

where we have included the terminal mismatches as well. Ter-
minal mismatches are the two (unpaired) nucleotides following the
last base pair in the stem or preceding the first base pair. Within the
nearest-neighbor approximation, the enthalpy and entropy of this
stem can be calculated by summing up the enthalpies and entropies
of each of the following neighboring base pairs:

5′ C U 3′ 5′ UC 3′ 5′ CC 3′ 5′ CG 3′ 5′ GG 3′ 5′ G U 3′

3′ C A 5 3′ AG 5 3′ GG 5 3′ GC 5 3′ CC 5 3′ C U 5′

The enthalpies and entropies of every possible set of neighbor-
ing base pairs (including terminal mismatches) have been tabulated
for both RNA andDNA [63, 64]. In the LandscapeFold algorithm,
the tables for RNA/RNA, DNA/DNA, and RNA/DNA bonds are
given by bondFreeEnergies() based on data from Refs. [53, 56,
61, 63, 64, 67–74]. For RNA/DNA hybrids, however, parameters
for some terminal mismatches have not been tabulated. For these,
LandscapeFold assumes that their enthalpies and entropies are
given by the means of the RNA/RNA and DNA/DNA parameters.
Terminal mismatches can be ignored in the free energy calculation
by setting the input includeTerminalMismatches to False.

4.2.2 Terminal A-U, G-U,

and A-T Penalties

When a stem starts or ends with an A-U, G-U, or A-T base pair, an
enthalpy and entropy penalty are introduced by the nearest-
neighbor model. These penalties are given by the terminalAUAT-
Penalties() function in LandscapeFold. The parameters for the
A-T penalties are given in Ref. [64]; for A-U and G-U pairs (which
are treated equivalently), the penalties comes from Ref. [53]. For
RNA/DNA hybrids, A-T pairs are given the DNA penalties and
A-U pairs the RNA penalties. These penalties can be ignored in the
free energy calculation by setting includeTerminalAUATPe-
nalties to False.

The A-T penalties are: ΔHpenalty=2.2 kcal/mol;
ΔSpenalty=6.9×10-3 kcal/mol K. The A-U penalties are:
ΔHpenalty=3.72 kcal/mol; ΔSpenalty=1.05×10-2 kcal/mol K.

4.2.3 Dangling Ends LandscapeFold also accounts for dangling ends, base pairs adjacent
to a single nucleotide (for example, the rightmost stem in Fig. 1a).
These parameters are tabulated in the danglingEndMatrices()
function for RNA/RNA bonds [61] and for DNA/DNA bonds
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[75]. For RNA/DNA bonds, LandscapeFold uses the RNA/RNA
parameters if the dangling nucleotide belongs to an RNAmolecule,
and the DNA/DNA parameters if it belongs to a DNA molecule.
Dangling ends can be ignored in the free energy calculation by
setting the input includeDanglingEnds to False.

4.2.4 Flush Coaxial

Stacks

If two stems are separated by a bulge loop (i.e., two adjacent
nucleotides are bound to two non-adjacent nucleotides) we have
a “flush coaxial stack.” The nearest-neighbor model calculates the
free energy as if the bulge was not present and the two stems were
continuations of one another. LandscapeFold differs from the stan-
dard nearest-neighbor model [76] in that it considers flush coaxial
stacks for any bulge loop and not just those of length one, since
these stacks compensate for LandscapeFold’s higher configu-
rational entropy cost of forming bulge loops. LandscapeFold also
differs from the standard models in that in the presence of a three-
way junction where each stem is flush with the next, LandscapeFold
considers two flush coaxial stacks, while previous methodologies
argue for considering only the most energetically favorable stack,
and treating the other as a dangling end [63]. Flush coaxial stacks
can be ignored by setting the input includeFlushCoaxial-
Stacks to False.

The user can also use the considerAllAsTerminalMis-
matches input to ignore both dangling ends and flush coaxial
stacks. If this is set to True, all ends of stems are treated as terminal
mismatches (even if the next nucleotides over are both bound as
part of different stems).

4.2.5 Terminal

Mismatches Which Could

Bind

Another element of the nearest-neighbor model is a free energy
penalty for terminal mismatches which could have been paired in a
different structure. If two nucleotides are complementary but
unpaired in a given structure, the purine is replaced by an A and
the pyrimidine by a C for the purposes of the free energy calculation
[76]. This modification is made in LandscapeFold if the unmatch-
edBPPenalty input is set to True, keeping RNA nucleotides as
RNA and DNA as DNA.

Whether or not this modification is made, the user can choose
to introduce an alternative penalty with the unboundButCould-
BindPenalties input. This input is a list of two floats, where the
first gives an enthalpic cost to each set of complementary unpaired
nucleotides, and the second is an entropic cost.

Other minor differences between LandscapeFold’s implemen-
tation of the nearest-neighbor model and others’ are described in
Ref. [52].
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4.2.6 Modifying the

Nearest-Neighbor Model

Parameters

The nearest-neighbor model parameters are imperfect due to errors
in their measurement, approximations made by the model, and
different experimental conditions [18, 76, 77]. In order to deter-
mine if a prediction is stable to variations in the model parameters,
we introduce a function corruptBondFreeEnergies(). This
function returns parameters in the same form as the bondFreeE-
nergies() function, but modifies the parameters by multiplying
them by a random multivariate Gaussian to introduce errors of
6.5%, 7.3%, and 2.4% in ΔHstems, ΔSstems, and ΔGstems (at 37

∘C),
respectively [61]. These percentages can be changed by the user
and are given as inputs to the corruptBondFreeEnergies()
function. The error in ΔGstems is lower than the other two because
of extremely high correlations (!1) betweenmeasurement errors in
ΔHstems and ΔSstems [61]. These corrupted parameters are used in
place of those from the bondFreeEnergies() function if the
input corruptFESeed is set to a non-zero value. If it is, it serves
as the seed for the random number generator in order to ensure
reproducibility.

4.3 The
Configurational Loop
Entropy Model

The full derivation of the configurational loop entropy model can
be found in Ref. [52]. Here, we will provide a guide to implement-
ing the model. The process has seven steps:

1. Convert the RNA structure to a graph, where each node is the
base pair at the edge of a stem (each stem thus yields two
nodes). Nodes are connected by two types of edges, represent-
ing single- and double-stranded RNA.

2. Count the number of double-stranded edges present. This will
determine the number of factors of vs in the final equation. If
any intermolecular stems are present in the structure, subtract
one from that number.

3. Remove “bridges,” which are edges whose removal discon-
nects the graph.

4. Remove nodes disconnected from other nodes. Any nodes that
are connected only to two single-stranded edges can similarly
be removed, and the two edges concatenated.

5. For each resulting disconnected graph, convert the graph to an
integral. The positions of each node but one are integrated over
three-dimensional space, and the integrands are given by the
bonds: double-stranded bonds are converted to delta functions
(Eq. 4), while single-stranded bonds are converted to Gaus-
sians (Eq. 5).

6. Perform the integrals. These can either be done by hand or
numerically, as described in detail in Ref. [52]. All integrals that
involve up to two double-stranded edges can be performed by
hand, and the LandscapeFold algorithm has those results hard-
coded in.



64 Ofer Kimchi et al.

Fig. 2 Graph construction. The process of converting from a structure to a graph (steps 1–2). Graphs are
sequence independent (middle). Nodes correspond to base pairs at the ends of each stem. Blue edges
represent double-stranded RNA connecting the nodes; red edges represent single-stranded RNA. For clarity,
we added a node corresponding to the final RNA nucleotide, as LandscapeFold does. Such nodes can be
added or not; they are removed as part of the graph decomposition process (Fig. 3). For clarity we number the
nodes 0–8

7. Multiply the integrals by one another and by vs raised to the
appropriate power (determined by Step 2). Finally, take the
natural logarithm and multiply by Boltzmann’s constant kB to
get the configurational loop entropy of the structure.

4.3.1 Converting from a

Structure to a Graph

The process of converting a structure to a graph (steps 1–2) is
depicted in Fig. 2. The structure under consideration is shown on
the left. The graph is sequence independent (middle) and is con-
structed by placing nodes at the two edges of each stem. For clarity,
it is useful to make the first and last nucleotides into their own
nodes, though these will be removed as part of the graph decom-
position process.

Nodes constructed from the same stem are connected by one
type of edge corresponding to double-stranded RNA (blue).
Another type of edge represents single-stranded RNA connecting
the nodes (red).

Nodes that do not correspond to the first or last nucleotide of
an RNAmolecule are always connected to one double-stranded and
two single-stranded edges. A node connected to itself by a single-
stranded edge has no other single-stranded edge connections.

The graph construction process is implemented in Landscape-
Fold by the createGraphFromStructure() function.

4.3.2 Decomposing the

Graph into Minimal Graphs

The most time-consuming step of the LandscapeFold algorithm as
a whole is the graph decomposition process (steps 3–4). This
process is depicted in Fig. 3, and is implemented in LandscapeFold
by the graphDecomposition() function.

We start with the graph previously constructed. It now
becomes important to note that at the time of graph construction,
each edge is given a length associated with it. The length of double-
stranded edges li is one fewer than the number of base pairs in the
corresponding stem (e.g., in the figure, l1=3; l2= l3= l4=4). The
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Fig. 3 Graph decomposition. The graph decomposition process (steps 3–4) is depicted. We keep track of the
length of RNA corresponding to each edge (si and li in the figure). After being created (left) the graph is
decomposed into its minimal graphs, where each minimal graph cannot be disconnected by the removal of
any edge (middle). Nodes disconnected from any edge are then removed. Nodes connected only to two single-
stranded edges are removed one by one, and the two edges merged (right). For this structure, l1= 3;
l2= l3= l4= 4; s1= 11; s2= 8; s3= 8; s4= 2; s5= 5; s6= 3; s7= 5; s8= 5

length of single-stranded edges si is one more than the number of
nucleotides in between the stems (in the figure, s1=11; s2=8;
s3=8; s4=2; s5=5; s6=3; s7=5; s8=5).

The graph decomposition process consists of two steps. The
first is edge removal: if the removal of an edge (single- or double-
stranded) disconnects the graph, that edge is removed and the
graph is disconnected. This process is depicted by the middle
panel of Fig. 3.

The second step of graph decomposition is node removal:
disconnected nodes (e.g., nodes 0 and 1 in the figure) are removed.
Then, any node that is connected only to two single-stranded edges
can similarly be removed, and the two edges concatenated. Thus in
the figure, the cycle consisting of nodes 2, 3, 5, and 7 is substituted
for a single node connected to itself by a single-stranded edge of
length s4 + s5 + s6 + s7. Each of the minimal graphs resulting from the
graph decomposition process can now be treated independently.

LandscapeFold currently has hard-coded the entropies of all
structures whose minimal graphs consist of no more than two
stems.

4.3.3 Converting Each

Graph to an Integral

The graph represents the entropy of the RNA in integral form. The
conversion of each graph to the configurational entropy of the
RNA (steps 5–7) is implemented by the calculateEntropy-
FromGraph() function. In order to explain how LandscapeFold
calculates the entropy of an RNA structure from the graphs found
in the previous section, we show here how to perform the same
calculation by hand.

For each graph, the positions of each node but one are
integrated over three-dimensional space. These positions are
measured with respect to the fixed node. In other words, the
fixed node is placed at the origin. The integrands are determined
by the edges of the graph.
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Double-stranded edges correspond to rigid stems, and, there-
fore, to a delta function in the integrand keeping the distance
between the nodes fixed. For example, a double-stranded edge of
length l12 connecting nodes 1 and 2 corresponds to a term

δðj r→ 1 - r
→

2j- l12Þ
4πl212

in the integrand, where r
→

i is the position of node i in three-
dimensional space, and the absolute value signs represent the mag-
nitude of the vector r

→
1 - r

→
2. The delta function is defined such

that for any function f(r) (where r = j r→ j),
Z

δðr - lÞf ðrÞdr = f ðlÞ ð4Þ

as long as l is within the limits of integration (the integral yields zero
otherwise).

Single-stranded edges correspond to flexible unpaired RNA.
The persistence length of single-stranded RNA is denoted b and is
approximately equal to 0.8 nm [78]. The persistence length of
single-stranded DNA is similar [79]. The persistence length in
units of nucleotides (nts, approximately 1/3 nm) can be input to
LandscapeFold through the input b. For concision, much of Land-
scapeFold is written using a parameter γ=3/2b instead of
b directly.

A single-stranded edge of length s12 connecting nodes 1 and
2 corresponds to a Gaussian term Ps12ð r

→
1 - r

→
2Þ in the integrand:

Ps12ð r
→

1 - r
→

2Þ = 3
2πs12b

! "3=2
exp -

3ð r→1 - r
→

2Þ
2

2s12b

 

= γ
πs12

! "3=2
exp -

γð r→ 1 - r
→

2Þ
2

s12

 ð5Þ

4.3.4 Graph

Decomposition Revisited

It is worth mentioning that the graph decomposition process is
merely a visual way of performing the simplest of these resulting
integrals. Edges that disconnect the graph can be removed because
the resulting disconnected graphs correspond to separable inte-
grals, and because

R
d r

→
Psð r

→Þ=
R
d r

→δðj r→ j- lÞ=4πl2 =1. Simi-
larly, nodes connected only to two single-stranded edges can be
removed and the edges concatenated because

R
Pxðr1!ÞPyðr2!- r1

!Þ
dr1
!=Pxþyðr2!Þ.

4.3.5 Using the Integrals

to Calculate the

Configurational Entropy

After writing down the relevant integrals, we multiply together the
results for each minimal graph into which the structure was decom-
posed. Since we ultimately take the logarithm of these results to get
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Fig. 4 Entropy calculation. The minimal graphs (left) are directly converted to integral form (middle). For
non-pseudoknotted structures, each minimal graph corresponds to a factor of P sð 0

→
Þ (Eq. 5). The results from

each minimal graph are multiplied together and by four factors of vs from the four stems in the original graph
(Fig. 2)

the loop entropy, multiplication here is equivalent to summing the
entropies of each minimal graph to get the total entropy.

We also multiply by a factor vrs , where vs is the volume within
which two nucleotides can bind, and r is given by the number of
stems present in the original structure (e.g., four for the structure
in Fig. 2 whose minimal graphs are shown in Fig. 4). However, if
the structure under consideration includes any intermolecular
stems, r is subtracted by one, since the first intermolecular stem is
considered separately by the ΔSduplex term.

The user can specify a value for vs to use in LandscapeFold, in
units of nts3, using the vs input. Currently, only a single value of vs
can be specified, even if one sequence is RNA and the other is DNA.
We found previously that vs=0.020±0.004 nts3 for RNA by com-
paring Eq. 5 to previously determined entropy costs of forming
hairpins of different lengths (i.e., different values of s12, with

j r→ 1 - r
→

2j=0 ) [52]. A similar analysis on DNA using data on
hairpins of lengths 3–8 from Ref. [64] finds a significantly different
best-fit value of vs=0.38±0.06 nts3 for single-stranded DNA. Due
to lack of similar data for RNA-DNA bonds, it is unclear what an
appropriate value for vs for RNA-DNA bonds should be.

The result of these integrations, after multiplying by the appro-
priate factors of vs, is the exponential of the entropy, normalized by
Boltzmann’s constant: eΔS loops=kB . Thus, we take the natural loga-
rithm of the result (which is unitless) and multiply by kB to get the
configurational loop entropy of the structure.

4.3.6 The Entropy of

Non-pseudoknotted

Structures

In Fig. 4 we show the resulting (disconnected) minimal graphs
from Figs. 2 and 3. The graphs are all identical in form: each is a
node connected to itself by a single-stranded edge of a certain
length. As previously mentioned, in order to convert from a
graph to an integral we integrate over the positions of all nodes
but one; therefore, since only one node is present in each graph, we
do not need to compute any integrals. We instead multiply the
appropriate factors of Psð 0

→
Þ by one another (one for each minimal

graph), and multiply the result by v4s . The result is shown in the
rightmost panel.
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In fact, any structure that contains no pseudoknots will ulti-
mately contain no integrals after the graph decomposition process,
and will only contain factors of Psð 0

→
Þ . A non-pseudoknotted

structure will always be converted to a set of single nodes connected
to themselves by a single-stranded edge. These represent internal
loops, bulge loops, hairpin loops, or multiloops; all take the same
form for their configurational entropy within our polymer physics
model.

4.3.7 The Entropy of

Pseudoknotted Structures

In Figs. 5 and 6 we show two further examples of converting from a
structure to the integral representing its configurational entropy.

In Fig. 5 we consider a simple pseudoknot, termed the H-type
pseudoknot. We convert from the structure to its respective graph,
which contains two double-bonded edges and three single-bonded
edges. The resulting graph is not disconnected by the removal of
any edge and is, therefore, minimal. It corresponds to the integrals
shown in the rightmost panel of the figure. In that equation, the
positions of three of the four nodes are integrated over all of three-
dimensional space. Two delta functions (corresponding to the two
stems) and three Gaussians (corresponding to the three single-
stranded edges) are present in the integrand, as are the two factors
of vs. The result of this integration is not shown, but a step-by-step
demonstration of how to perform this and similar Gaussian inte-
grals with delta functions is given in Ref. [52].

Fig. 5 Intramolecular pseudoknot entropy example. A simple pseudoknot is converted to a graph, and from
there to integral form. The positions of all nodes but one are integrated over three-dimensional space. Each
double-stranded edge corresponds to a delta function in the integrand; each single-stranded edge corre-
sponds to a Gaussian Ps. Two factors of vs are included for the two stems. For this structure, l1= l2= 3;
s1= 7; s2= 6; s3= 3. Figure is adapted from Ref. [52]

Fig. 6 Intermolecular pseudoknot entropy example. A simple intermolecular pseudoknot is converted to a
graph, decomposed into its minimal graphs, and converted to integral form. Since there are intermolecular
stems, one fewer factor of vs is included than the number of total stems. For this structure, l1= l2= 3;
s1= s2= 5
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In Fig. 6 we consider a simple intermolecular pseudoknot. In
this example, once the structure is converted to a graph, the graph
can be decomposed further into a simple minimal graph. The
configurational entropy of the full structure can be found by con-
verting the graph to its integral form. There are two stems in the
original structure, which in a single-molecule structure would cor-
respond to two factors of vs in the final equation. However,
since the structure includes at least one intermolecular stem, we
have 2-1=1 factor of vs present in the equation for ΔSloops.

5 The Results of the LandscapeFold Calculation

5.1 Accessing the
Structures and Their
Free Energies

The results of the landscape calculation are stored in the Land-
scapeFold object (sol in the example from Subheading 2). For
example, sol.STableBPs and sol.STableStructure are the
two versions of the S-Table discussed in Subheading 3.1.2. Simi-
larly, sol.structures stores the list of stems present in each
structure, where each stem is refered to by its index in the S-Table.

The ordering of sol.structures is determined by the enu-
meration procedure. However, sol.indexSort is an array that
provides a more practical ordering for the structures: its first ele-
ment is the index of the minimum free energy (MFE) structure, its
second element is the index of the second-lowest free energy struc-
ture, etc. In order to examine the specific base pairs comprising low
free energy structures, the function sol.MFEStructures(n)
returns a list of the n lowest free energy structures where here the
base pairs making up each structure are given.

Similarly, sol.sortedFEs and sol.sortedProbs are sorted
arrays providing, respectively, the free energies and equilibrium
probabilities (Eq. 2) of each structure. To examine each component
of the free energy in more detail, the arrays sol.allBondEner-
gies, sol.allBondEntropies, sol.allLoopEntropies, and
sol.allDuplexEntropies yield ΔHstems, ΔSstems, ΔSloops, and
ΔSduplex, respectively, in the same ordering as the sol.
structures list.

5.2 Multiple
Sequences

If two sequences are inputted, LandscapeFold will return all possi-
ble structure pairs into which they can fold, some of which include
only intramolecular base pairs, and some of which include inter-
molecular base pairs. For example, consider two sequences s1
and s2. Sequence s1 can fold into structures s11,s

2
1,s

3
1, and sequence

s2 can fold into structures s12 and s22 . They can also bind to
one another to form a structure s112 . In this case, the elements
of sol.structures will be the elements of the set:
fðs11,s12Þ,ðs11,s22Þ,ðs21,s12Þ,ðs21,s22Þ,ðs31,s12Þ,ðs31,s22Þ,s112g , and the elements
of, e.g., sol.sortedFEs will be the (sorted) total free energies of

5.2.1 Implementation of

Multiple Sequences in

LandscapeFold
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each structure pair. Each of these structure pairs is thus treated the
same way an individual structure is treated for a unimolecular input.

Bimolecular structure landscapes are considered by concatenat-
ing the two sequences and separating them by a linker of “O”s
which is disregarded in free energy calculations [29]. We use a
linker of 6 nucleotides (or more precisely, twice the user-specified
minimum number of nucleotides in a hairpin). The indices of
nucleotides corresponding to the linker are stored in the sol.
linkerPos array.

When using inputs such as frozenBPs on a bimolecular land-
scape, the nucleotides are numbered assuming that the linker is
present. For example, in order to specify that G must bind to C for
the sequences pair [GUU, AAC], the user should input fro-
zenBPs=[[0, 11]].

5.2.2 Potential Speed-

ups for Multiple Sequences

In practice, treating multiple sequences by concatenation can also
lead to wasted computation time (e.g., by recalculating the free
energy of structure s11 multiple times, for each structure s i2 with
which it is paired). The function sol.twoStrandLandscape-
Calculation() cuts down on that wasted computation time by
first treating each sequence separately, and next considering only
those structures that include intermolecular base pairs, thus enu-
merating each structure only once. LandscapeFold does not cur-
rently consider homo-dimers in this calculation.

5.2.3 Prediction of

Monomer and Dimer

Concentrations: User Inputs

and Outputs

If multiple sequences are input, LandscapeFold also calculates the
equilibrium concentrations of the monomer and dimer species. The
total concentration of each strand (in units of M) is input using the
concentrations variable. LandscapeFold stores the predicted
equilibrium concentrations of monomers and dimers in the variable
sol.equilibriumConcentrations. It is generally a list of three
values: the concentration of the first monomer, of the second
monomer, and of the dimer.

In the case where the two sequences are identical, only the first
element of the concentrations input is used. In this case, sol.
equilibriumConcentrations is a list of only two values: the
concentration of the monomers, and of the dimers.

5.2.4 Prediction of

Monomer and Dimer

Concentrations: Details of

LandscapeFold’s Process

Equilibrium concentrations are calculated by finding a simulta-
neous solution to a set of equations. Letting the total concentration
of the first strand be c1 and of the second strand be c2
(as determined by the concentrations input), the equilibrium
monomer concentration of the two strands be cm1 and cm2, respec-
tively, and the equilibrium dimer concentration be cd, there are two
conservation laws given by
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cm1 þ cd = c1

cm2 þ cd = c2
ð6Þ

If the two sequences are identical, there is only one conservation
law (cm1 þ 2cd = c1).

The relative ratios of the monomer and dimer concentrations
are determined by the ratio of Boltzmann factors. We let Zm1 be
defined as Zm1 =

P
σ1 exp - βGσ1ð Þ , where the sum is over all

monomeric structures of the first strand σ1 each of which has free
energy Gσ1 , and we let Zm2 be similarly defined. Letting Z 2

m be
equal to the product Zm1Zm2, it can be seen that Z 2

m is defined as a
similar sum over all monomeric structure pairs. Finally, Zd is defined
as a similar sum over all dimeric structures: Zd =

P
σd
exp - βGσdð .

With these definitions in hand, we can write the final equation
constraining our system [66]

cd ρH 2O

cm1cm2

= Zd

Z 2
m

ð7Þ

where the factor of ρH 2O ≈55 M exactly cancels out with the
correction factor introduced in Subheading 4.1.3. The factor of
ρH 2O is omitted from this formula if includeRhoH2OCorrection

is set to False.
LandscapeFold automatically solves this simultaneous set of

equations to find the equilibrium monomer and dimer concentra-
tions. If the two sequences are identical, the product cm1cm2 is
replaced by c2m in Eq. 7.

5.3 Re-running the
Code with Different
Parameters

LandscapeFold stores results in a way that makes it easy to examine
how changes to the nearest-neighbor parameters or the entropy
model parameters affect the landscape. In essence, LandscapeFold
stores for each secondary structure how each parameter will affect
the free energy of that structure. Then, by running the function
sol.postCalculationFxn(), LandscapeFold can quickly recal-
culate the free energy of each structure with given modified para-
meters. As a general estimate, sol.postCalculationFxn()
takes about 10% of the total calculation time. In this section, we
describe how it is implemented.

The property sol.allComponentGraphs is a list of length
Nstructures. For each structure, it keeps track of how many instances
of each type of minimal graph are present in that structure, and the
lengths of each edge in those graphs. In addition, sol.allNumVs
is an array keeping track of how many factors of vs are included in
each structure integral. With these arrays, if the parameters b or vs
are modified, the configurational loop entropy of each structure can
be quickly recalculated without needing to again convert each
structure to a graph and perform graph decomposition.

The property sol.bondFECounts is also a list of length
Nstructures. It holds for each structure a set of sparse arrays
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describing how many instances of each set of possible neighboring
base pairs are present in that structure. For example, for each
structure, it holds a sparse array with 4× 4×4=64 elements yield-
ing the number of instances of each of the 64 possible neighboring
DNA/DNA base pairs present in that structure. That array can
then be multiplied by arrays storing the energies and entropies of
each of these neighboring pairs (according to the nearest-neighbor
model) to yield the DNA/DNA contributions to ΔHstems and
ΔSstems. sol.bondFECounts also stores similar lists of sparse
arrays for RNA/RNA and RNA/DNA nearest neighbors, as well
as for the number of terminal A-U, G-U, and A-T base pairs present
in each structure (Subheading 4.2.2).

The matrices sol.dangling5Count and sol.dangling3-
Count store similar lists of sparse matrices giving for each structure
how many of each possible 3′ and 5′ dangling ends are present in
that structure (Subheading 4.2.3). sol.unboundButCould-
BindCounts stores how many complementary terminal mis-
matches are present in each structure (Subheading 4.2.5)
allowing the user to easily and quickly examine how changing the
penalty for these affects the overall structure landscape.

Thus, only a few simple matrix multiplications need to be
performed in order to examine how modifications to the nearest-
neighbor parameters affect the complete free energy landscape of a
set of sequences.

5.4 Returning Graph
Topologies

Considering the graph associated with each structure (Subheading
4.3.1) is a useful way to coarse-grain over similar structures by their
topologies. In order to instruct the algorithm to store information
regarding graphs, the user can set the input storeGraphs to
True. In that case, the unique list of graphs corresponding to
structures enumerated by the algorithm is given by sol.struc-
tureGraphList (a list of lengthNgraphs≤Nstructures). The index of
that list to which each structure corresponds is given by the length-
Nstructures array sol.allWhichStructureGraph.

By summing over the equilibrium probabilities of each struc-
ture corresponding to a given graph, we can get the equilibrium
probability of that topology forming. That information is stored in
the sorted array sol.sortedGraphProbs, while the array sol.
indexSortedGraphProbs provides the mapping between the
sorted and unsorted graph orderings.

5.5 Visualizing
Results

If the user sets the input makeFigures to True, LandscapeFold
will automatically make three plots at the end of the calculation.
The first two visualize the minimum free energy structure found
in planar graph and circle diagram formats. These are
implemented using the drawRNAStructure() and drawRNAS-
tructureSeqCircle() functions, respectively, which take as
inputs a structure to visualize and its corresponding sequence.
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Fig. 7 Histogram of structure free energies. A histogram of the free energies of
all structures with a minimum stem length of 4 nts into which the sequence
shown in Fig. 1a can fold

The third plot made is a histogram of the free energies of all
structures returned by the algorithm (Fig. 7) implemented with
the sol.histFEs() function.
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