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Bacteria have evolved many defenses against invading viruses (phage). Despite the
many bacterial defenses and phage counterdefenses, in most environments, bacteria and
phage coexist, with neither driving the other to extinction. How is coexistence realized
in the context of the bacteria/phage arms race, and how are immune repertoire sizes
determined in conditions of coexistence? Here we develop a simple mathematical model
to consider the evolutionary and ecological dynamics of competing bacteria and phage
with different immune/counterimmune repertoires. We find an ecologically stable
fixed point exhibiting coexistence, in agreement with the experimental observation
that each individual bacterium typically carries multiple defense systems, though
fewer than the maximum number possible. However, in simulations, the populations
typically remain dynamic, exhibiting chaotic fluctuations around this fixed point.
These dynamics enable coexistence even when phage (predator) strains outnumber
bacteria (prey) strains. We obtain quantitative predictions for the mean, amplitude,
and timescale of these dynamics. Our results provide a framework for understanding the
evolutionary and ecological dynamics of the bacteria/phage arms race and demonstrate
how bacteria/phage coexistence can stably arise from the coevolution of bacterial
defense systems and phage counterdefense systems.

bacteria | phage | ecology | model | coexistence

Bacteria and the viruses that infect them (phage) have been engaged in an arms race
spanning eons. Each bacterium typically carries many defense systems to protect against
phage (1). Simultaneously, phage counterdefense systems enable them to evade these
bacterial defenses (2). Both bacterial defense systems and phage counterdefense systems
impose a fitness cost on the strains that carry them (3, 4). In bacteria, for example, both
metabolic costs associated with protein production (5) as well as inadvertent self-targeting
(6) contribute to the fitness cost. In the absence of selection pressure from the opposing
species, these systems are therefore quickly lost, over the timescale of a few generations
(7). We sought to understand the coevolution of these systems. What determines the size
of a bacterial cell’s immune repertoire and a single phage’s counterimmunity repertoire?

The multiplicity of defense systems may enable bacteria to repel phage invaders by
spreading defense systems through horizontal gene transfer (8). This ‘pan-immunity
hypothesis’ explains boom and bust cycles of phage and bacteria as arising from
subsequent rounds of phage invasion and bacterial defense. In contrast, we wanted
to study how persistent coexistence of phage and bacteria is realized within the context
of the defense/counterdefense arms race.

We consider a mixture of bacterial strains with population densities Bi and phage
strains with densities Pj. Each bacterial strain carries a subset of a total number ntot

possible defense systems . Bacterial strains carrying more systems have a smaller growth
rate �i. Similarly, each phage strain carries a set of counterdefense systems, such that
phage j can infect bacteria i if it has a corresponding counterdefense system for each of
bacteria i’s defense systems (9). The cost of counterdefense systems is imposed on the
phage burst size bj + 1 . Bacterial and phage strain death rates are given by �i and �j,
respectively. Finally, we include steady immigration fluxes �i and �j for the bacteria and
phage. The system’s dynamics are given by

dBi
dt

= Bi

(
�i − �i −

∑
j

kijPj

)
+ �i;

dPj
dt

= Pj

(
− �j + bj

∑
i

kijBi

)
+ �j, [1]

where the infection rate kij = k if phage j can infect bacteria i and 0 otherwise, and where
we have neglected delays associated with phage reproduction (10). For simplicity, we
focus on the case where each defense/counterdefense system has the same cost, and the
immigration and death rates are strain-independent. We define a “largest positive-growth
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Fig. 1. Fixed-point and dynamical simulation results. (A)
Predicted ecological fixed point for ntot = 110 total
defense systems, with npos

p = 100 maximum counter-
defense systems per phage strain. Distance between
predicted ecological fixed point n?

b and maximal number
of defense systems per bacterial strain, npos

b , is shown as
a function of npos

b and the ratio between the growth rate
of bacteria with no defense systems, �max, and the death
rate of bacteria, �. Gray points represent parameters for
which no ecologically stable fixed point is predicted. (B)
Representative simulation results for an ntot = 6 system
with �max/� = 0.1 and �n?

b
/� ≈ 5.7× 10−2, displaying the

histogram of population densities of bacterial and phage
strains with different numbers of defense/counterdefense
systems per strain. (C) Population dynamics of bacteria
with nb = n?

b = 2 defense systems each (red) and
phage with np = n?

p = 3 counterdefense systems each
(blue) in the ntot = 6 simulation of panel (B). (D and
E) Representative simulation results as in (B and C), but
with bacterial growth rate increased to �max/� = 10
(and �n?

b
/� ≈ 5.7). (F ) Dependence of mean population

densities for ntot = 6 system (narrow solid curves), ntot =
0 system (narrow dotted curves), and analytical dynamical
fixed-point prediction from Eq. 1 (corresponding wide
curves). (G) Dependence of dynamic ratio (main panel) and
timescale of dynamics (Inset) for ntot = 6 system (solid
curves), ntot = 0 system (dotted curves), and analytical
prediction (SI Appendix, Eq. S10; dashed curves). Here,
initial conditions were kept constant independent of x-
axis parameter variation. The dynamic ratio measures the
amplitude of fluctuations and is defined as the typical ratio
of local maxima to local minima. See SI Appendix, sections
S3 and S4 for further discussion.

repertoire size” for bacteria and phage, such that bacteria with
nb > npos

b defense systems have a negative net growth rate �−�,
and phage with np > npos

p counterdefense systems have a negative
net burst size b.

We first address Eqs. 1 analytically. For a system composed
exclusively of bacteria with nb defense systems and phage with
np counterdefense systems, a dynamically stable fixed point (dfp)
can be found by solving dBi

dt = dPj
dt = 0. Due to symmetry, at

this dfp , all bacterial strains with nb defense systems are present
at equal population densities Bfp

nb , and all phage strains with np
counterdefense systems are present at equal population densities
Pfp
np . For certain combinations (n?

b, n
?
p), this dfp will also be an

ecologically stable fixed point (efp) with respect to invasions by
bacteria with n?

b ± 1 defense systems, and to phage with n?
p ± 1

counterdefense systems (SI Appendix, sections S1 and S2). At this
efp, bacteria typically carry fewer than the maximal number of
defense systems allowed by a positive growth rate, and similarly
phages carry fewer than the maximal number of counterdefense
systems (Fig. 1A).

We next turn to dynamical simulations. We consider a system
with ntot = 6 possible defense/counterdefense systems, with
parameters such that npos

b = 3 and npos
p = 4, and for which

we predict the existence of an efp with (n?
b, n

?
p) = (2, 3) <

(npos
b , npos

p ) (SI Appendix, Eq. S5). At this efp, both bacterial
growth rate and phage burst size are roughly half their maximum
values. After a short transient period, we find that all populous
bacterial strains have n?

b defense systems, and all populous phage

have n?
p counterdefense systems (Fig. 1B). In the absence of

immigration (� = � = 0) only these strains survive. The
analytically predicted dfp population densities predict well the
time-averaged population densities of these strains (Fig. 1B,
vertical lines). However, the system displays persistent chaotic
dynamics (Fig. 1C ; Lyapunov exponent = 0.08; see SI Appendix,
section S3) (11).

These chaotic population fluctuations enable coexistence to
be maintained even when the number of phage “predator”
strains,

(ntot

n?
p

)
, exceeds the number of bacterial “prey” strains

(ntot

n?
b

)
(12, 13). For different parameter choices, the chaotic fluctuations
enabling this coexistence may either be largest in the phage
population (as in Fig. 1 B and C ) or largest in the bacterial
population (as in Fig. 1 D and E). This variation in the dynamics
comes with no apparent effect on the coexistence itself: we find
that all bacteria with n?

b defense systems and all phage with n?
p

counterdefense systems coexist in all cases we examined, even in
the absence of immigration, � = � = 0. Sufficient parameter
heterogeneity can lead some strains to go extinct, but we found
no extinction within 106 generations for moderate amounts of
parameter heterogeneity (O(10−5)).

While the average population densities are well predicted by
the dfp population densities (Fig. 1F ), the dynamics cannot
be predicted by fixed-point analysis. Helpfully, we find a
quantitatively similar parameter dependence of dynamics in
the analytically tractable ntot = 0 case, corresponding to a
minimal oscillatory system of one bacterial strain and one
phage strain (“1:1 case”; see SI Appendix, section S4). Both the
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parameter-dependent dynamic ratio (i.e., the amplitude of
fluctuations) and the dynamics’ timescale are in quantitative
agreement between the ntot = 6 and 1:1 cases (Fig. 1G). Using
the 1:1 system as a guide, we can thus predict the parameter-
dependent features of the chaotic dynamics for more complex
cases with multiple bacterial and phage strains.

Our model makes several simplifying assumptions. While we
have considered all defense systems to be qualitatively inter-
changeable, defense systems in nature operate through different
mechanisms and may have qualitatively different effects on both
the growth cost to the bacterium and on the success or failure
of the invading phage (and similarly for phage counterdefense
systems) (3). Interactions among defense systems may also change
their efficacies (14, 15). We have also focused exclusively on
obligate lytic (virulent) phage, neglecting alternative phage infec-
tion strategies (16). Although temperate phage may qualitatively
affect the behavior of many phage–bacteria interactions (17),
here, the effect of superimmunity exclusion (i.e., that lysogens are
immune to infection by phage of the same strain that lysogenized
them) may be considered as a special case of a defense system.
Similarly, chronic infections wherein phages reproduce and exit
the cell without cell lysis may be considered as a modification of
the infection rate k and the burst size b. Furthermore, although
we have assumed well-mixed populations, spatial organization
likely affects both the dynamics and coexistence of phage/bacteria
communities, especially in nonaquatic environments (18). In this
regard, abortive infection defenses will be a fruitful topic for
future work. Finally, a variant of the model described by Eqs. 1
without immigration but allowing strains to stochastically gain,
lose, and exchange systems with one another through mutations
and horizontal gene transfer, yields qualitatively similar results
(SI Appendix, section S3).

In summary, we have developed a model for the dynamics
of competing phage and bacteria with different sets of defense
and counterdefense systems. A fixed-point analysis (confirmed
by dynamical simulations) indicates that phage and bacteria
typically evolve to have more than one and fewer than the
maximum number of defense/counterdefense systems in each
strain. This qualitative behavior has been observed in nature and
has previously been explained by the pan-immunity hypothesis,
which argues that invading phage can be driven to extinction
as long as some bacteria within a community are immune to
the invading phage, and that this immunity can be conferred to
other bacteria through horizontal gene transfer (8). In contrast,
we find that within our model, large immunity and counterim-
munity repertoires emerge naturally and enable bacteria/phage

coexistence. This coexistence is manifested in persistent chaotic
dynamics, with the mean, amplitude, and timescale of these
dynamics well predicted by an analysis based on the competition
between a single bacterial and a single phage strain. Although
the ecological fixed point of the system (n?

b, n
?
p) depends on the

details of defense and counterdefense system costs (SI Appendix,
Eq. S5), we find that the qualitative dynamics depend only on
the ratio �/� (SI Appendix, Eqs. S13 and S18). Thus, there
are two main regimes of system behavior: compared to phage
death rate, the bacterial growth rate may either be slow (Fig.
1 B and C ) or fast (Fig. 1 D and E). Finally, although we
have focused our analytical analysis on symmetric systems, our
simulations demonstrate that even nonsymmetric systems with
modest amounts of heterogeneity are not limited by the principle
of competitive exclusion in our model. Thus, we find that the
chaotic dynamics of the system enable the coexistence of more
phage (predator) strains than bacterial (prey) strains, exceeding
the biodiversity predicted by other frameworks such as “kill-the-
winner” (19).

The discovery that bacteria typically carry multiple coexisting
defense systems (and phage, multiple counterdefense systems)
has raised many questions. Chief among these, what controls the
number and type of defense and counterdefense systems in a par-
ticular bacterium or phage? One possibility is that these systems
are controlled by happenstance, with horizontal gene transfer
mediating random gains and losses of systems. Alternatively,
our simple model suggests that states of evolutionary stability—
albeit with fluctuations about these states—may provide a helpful
guiding perspective.

Materials and Methods

Simulations were performed using Python version 3.9.13. Details of derivations
and simulation methodology may be found in SI Appendix.

Data, Materials, and Software Availability. There are no data underlying
this work.
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Supplement: Bacterial defense and phage counter-defense lead to
coexistence in a modeled ecosystem

S1 Deriving the conditions for an ecologically stable fixed point
To find the conditions defining an ecologically stable fixed point, we start from Eqs. 1, making the simplifications
discussed in the main text, and assuming that the immigration terms λ and ν are negligible for the purpose of the
following analyses. We consider a system composed exclusively of bacteria with nb defense systems and phage with
np counter-defense systems. At a dynamical fixed point of such a system, due to symmetry, all

(
ntot

nb

)
bacterial strains

with nb defense systems are present at equal population densities Bfp
nb , and all

(
ntot

np

)
phage strains with np counter-

defense systems are present at equal population densities P fp
np . This dynamical fixed point is given by

Bfp
nb

=
δ

kbnp

(
np

nb

) ,
P fp
np

=
αnb

− µ

k
(
ntot−nb

np−nb

) , (S1)

where
(
np

nb

)
is the number of bacterial strains each phage strain can infect, and

(
ntot−nb

np−nb

)
is the number of phage strains

that can infect each bacterial strain. αnb
is the growth rate of bacteria with nb defense systems, and is given by

αnb
= g(nb) with a monotonically decreasing growth function g. Similarly, bnp

+1 is the burst size of phage carrying
np counter-defense systems, and is given by bnp

+ 1 = h(np) for a monotonically-decreasing function h. (Note that
the effective burst size b takes into account the loss of the infecting phage particle). We assume g and h are concave
functions, but our results largely hold if they are convex (except in the ntot → ∞ limit; see Supplementary Section
S2).

This dynamical fixed point will further be an ecological fixed point if it is stable to invasions by bacteria with a
different number of defense systems, or to phage with a different number of counter-defense systems. This will occur
if the growth rates of such invading strains at the dynamical fixed point are negative. We refer to such an ecologically
stable fixed point as (n⋆

b , n
⋆
p). The growth rate of an invading bacterial strain with n†

b defense systems at the ecological
fixed point would be

dBn†
b

dt
= Bn†

b

(
αn†

b
− µ− k

(
ntot − n†

b

n⋆
p − n†

b

)
P fp
n⋆
p

)
, (S2)

where Bn†
b

is the population of the invading bacterial strain. Similarly, the growth rate of an invading phage strain

with n†
p counter-defense systems would be

dPn†
p

dt
= Pn†

p

(
−δ + kbn†

p

(
n†
p

n⋆
b

)
Bfp

n⋆
b

)
. (S3)

These terms are negative for invading bacterial strains with n†
b = n⋆

b ± 1 defense systems, and for invading phage
strains with n†

p = n⋆
p ± 1 counter-defense systems, when

1



αn⋆
b+1 − µ

αn⋆
b
− µ

<
n⋆
p − n⋆

b

ntot − n⋆
b

,

αn⋆
b
− µ

αn⋆
b−1 − µ

>
n⋆
p − n⋆

b + 1

ntot − n⋆
b + 1

,

bn⋆
p+1

bn⋆
p

<
n⋆
p − n⋆

b + 1

n⋆
p + 1

,

bn⋆
p

bn⋆
p−1

>
n⋆
p − n⋆

b

n⋆
p

.

(S4)

By taking the natural logarithm and substituting derivatives for differences, we arrive at the simplified expression

n⋆
p = ntot

[
1 +

d

dnb
log

(
αnb

µ
− 1

)] ∣∣∣∣∣
nb=n⋆

b

,

n⋆
b = −n⋆

p

[
d

dnp
log
(
bnp

)] ∣∣∣∣∣
np=n⋆

p

.

(S5)

S2 Ecological fixed point behavior as ntot → ∞
The behavior of the ecological fixed point defined by Eqs. (S5) as ntot → ∞ depends on how npos

b and npos
p scale with

ntot. Since ecological stability requires n⋆
p > n⋆

b , npos
p > npos

b must hold to avoid the trivial outcome with no phage
present. This inequality is biologically reasonable given the complexity required of defense systems compared to the
relative simplicity of counter-defense systems; as an example, consider the immensely complex Type 1-F CRISPR-Cas
system which can be evaded by phage that express a single short RNA molecule [S1]. As ntot → ∞, there are therefore
three possibilities: 1) npos

b and npos
p are both intensive; 2) npos

b and npos
p are both extensive; 3) npos

b is intensive while
npos
p is extensive. We find that in cases (1) and (2), n⋆

b and n⋆
p are approximately equal to npos

b and npos
p , respectively,

as ntot → ∞. However, surprisingly, in case (3) and for concave cost functions g and h, npos
b − n⋆

b and npos
p − n⋆

p both
grow with ntot. In this case, each individual bacterium optimally carries a subset of possible defense systems, even
though it could carry far more and still continue to grow (and similarly for phage).

S3 Details of dynamical simulations
We use the following parameters in our simulations, with time units such that δ = 1 and population density units such
that k = 1: µ = 10−2; λ = ν = 10−15; bmax = 15. Bacterial growth rate α is varied as described in the main
text; all other parameters are kept constant throughout. The bacterial death rate µ = 10−2 was chosen to be much
smaller than the phage death rate δ so that we can explore the α < δ regime while maintaining µ ≪ α, such that
bacterial populations are primarily limited by phage predation. For example, for αn∗

b
≈ 0.05 as in Fig. 1b,c, the rate

of bacterial death due to phage predation at the dynamical fixed point,
(
ntot−n⋆

b
n⋆
p−n⋆

b

)
kP fp

n⋆
p
, is approximately 5× larger than

µ; for αn∗
b
≈ 5 as in Fig. 1d,e, it is approximately 500× larger. The particular values of λ and ν matter very little

as long as they are in the regime of slow immigration. (The opposite regime where immigration is substantial can be
qualitatively different because immigration can stabilize the populations of phage and bacteria strains which would
otherwise go extinct). Finally, the particular value of the phage burst size b has very little effect on our results since
the ecological fixed point depends on d

dnp
log bnp (and is therefore unchanged when b is modified by a multiplicative

factor; Eq. (S5)) and the qualitative dynamical behavior is mostly determined by α/δ as described in Section S4.
Natural phage burst sizes are typically of O(100) phage particles per burst, but also are accompanied by a sizeable
time delay between phage infection and lysis. Given that our model neglects this time delay, the effective burst size
must be decreased to reproduce overall phage proliferation rates. bmax = 15 was therefore chosen to correspond to a
burst size of ∼ 200 for a system with a typical lysis time [S2].

2



We implement concave cost functions g(nb) = αmax cos
(

πnb

2nmax
b

)
and h(np) = bmax cos

(
πnp

2nmax
p

)
. nmax

b sets the
maximum number of defense systems bacteria can have before their growth rate α reaches zero, and is somewhat
larger than npos

b which is determined by the net growth rate α − µ reaching zero (and similarly for nmax
p for phage).

Strains with more systems than the maximum don’t grow: g(nb ≥ nmax
b ) = 0, and similarly, h(np ≥ nmax

p ) = 0. In our
simulations, we set nmax

b = 3.27, and nmax
p = 4.5, as these values yielded (n⋆

b , n
⋆
p) = (2, 3) and (npos

b , npos
p ) = (3, 4)

for our parameter choices.
In all simulations, the growth rates of individual bacterial strains αi, the burst sizes of individual phage strains bj ,

and the infection rates kij were all varied at order 10−5. Specifically, these terms were multiplied by
(
1 + 10−5 × (2r − 1)

)
where r is a random number uniformly distributed between 0 and 1, chosen randomly and independently for each strain
or strain-strain interaction. Thus, small amounts of parameter heterogeneity are added to the system; for example, val-
ues of k ultimately range from (1− 10−5) to (1 + 10−5).

We ran each simulation for 107 time units (equivalent to 1.4× 106 bacterial generations for α/δ = 0.1, or to more
generations for larger α).

We also ran simulations initializing the system with only bacterial strains for which nb = n⋆
b and phage strains

with np = n⋆
p, and setting the immigration fluxes to zero, λ = ν = 0. We found qualitatively and quantitatively

similar results to those displayed in Fig. 1b-e, and observed no phage or bacterial strains going extinct over the course
of these simulations. The simulations in Fig. 1f-g were performed in this manner.

To measure the Lyapunov exponent, we initialized two trajectories using the parameters of Fig. 1b,c, with initial
values of phage populations ∼ 10−14 higher in one trajectory than the other. Specifically, the initial values in the
second simulation were equal to those of the first, plus 10−14 × (2r − 1), where r is a uniformly distributed random
number between 0 and 1 chosen independently for each phage strain. We then measured the distance between the
two trajectories as

√
(B −B′)2 where B is the total bacterial population. This value grows exponentially until ∼ 400

generations, at which point it begins fluctuating between 10−5 and 100. This behavior of the distance between tra-
jectories initialized nearby (namely, exponential growth, followed by fluctuations around a fixed value) is typical of
chaotic systems. The Lyapunov exponent is defined as the slope of the exponential growth segment. To measure this,
the logarithm of the distance was fit to a line (or equivalently, the distance was fit to an exponential). This analysis
was repeated ten times for different instantiations of r, with measurements of the Lyapunov exponent having a mean
of 0.0822 and a standard deviation of 0.0014.

In Fig. 1g, we needed to measure the dynamic ratio in a consistent way for both chaotic and oscillatory systems.
To do this, first, we identified the local peaks and troughs (i.e. where the derivatives of the population densities change
sign). For oscillatory systems, the peaks are all at (very nearly) equal values, as are the troughs. For chaotic systems,
this is not the case. In order to measure the peaks and troughs in a manner that does not change much between different
instantiations of the chaotic dynamics, we therefore defined the dynamic ratio as the ratio of the 90th percentile of the
local population density peaks to the 10th percentile of the local population density troughs. The dynamic timescale
was measured by taking the median of the time between local maxima and the median of the time between local
minima, and averaging these two medians. For oscillatory systems, this measures the period of oscillations.

The simulations in Fig. 1f-g were initiated at Bi = 0.06 × (1 + r) and Pj = 0.06 × (1 + r) where r is a
random number uniformly distributed between 0 and 1, chosen independently for each bacterial and each phage strain.
Qualitatively similar results were obtained for simulations initiated at Bi = Bfp

n⋆
b
× (1 + r) and Pj = P fp

n⋆
p
× (1 + r),

i.e. where the initial conditions depend on parameter values through the dynamical fixed-point population densities.
Finally, we developed a variant of these simulations to take into account the stochasticity of evolutionary dynamics.

Rather than initiating the system with all strains present, we initialized the system with only one bacterial strain (with
one defense system), and one phage strain (with the corresponding counter-defense system). After every 5 timepoints
of simulation, we performed a mutation step. In this mutation step, new bacterial or phage strains could be created,
by either gaining or losing defense or counter-defense systems. First, we choose whether to mutate the bacteria (with
probability p) or the phage (with probability 1− p); we chose p = 10−2 to approximate the challenge bacteria face in
constructing new defense systems as opposed to the relative simplicity of phage counter-defense systems, as discussed
in the previous section. Next, we select the strain to mutate, proportionally to its population density at the time of
the mutation step. We then determine whether the mutation will be the (a) gain or (b) loss of defense (or counter-
defense) systems, each occurring with probability 1/2. Finally, all possible single mutants either adding or removing a
defense or counter-defense system (depending on which was selected) from the selected strain are added to the system
at a small initial population (10−15), or if they were already present, their population is increased by the same small
amount. These simulations resulted in the same qualitative behavior as the constant immigration rate simulations
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discussed in the main text, evolving towards the ecologically stable fixed point at the system level, and exhibiting
chaotic dynamics at the population level.

S4 Dynamical analysis
To understand the dynamical behavior of the system, we turn to the ntot = 0 case, which we refer to as the 1:1 case
since it involves a single bacterial strain and a single phage strain. In Fig. 1f-g, we show that certain aspects of the
dynamical behavior of the 1:1 case closely parallel those of systems with ntot > 0. In this section, we quantitatively
analyze the 1:1 case.

First, we perform linear stability analysis to describe the behavior of the system near the dynamical fixed point
(Eqs. (S1)). The essential element of linear stability analysis is the calculation of the eigenvalues of the Jacobian matrix
at the dynamical fixed point. For the 1:1 case, the eigenvalues are ±i

√
δ (α− µ). That these are imaginary indicates

that the 1:1 case undergoes continued oscillations. The period of these oscillations is given by 2π/
√
δ (α− µ). This

prediction is plotted as a dashed gray curve in the inset to Fig. 1g.
Predicting the amplitude of oscillations is less straightforward, and to our knowledge no generic method enables

this prediction. Linear stability analysis provides no information regarding the amplitude of oscillations. To address
this challenge, we recognize that there is a quantity C satisfying dC/dt = 0. In general, this quantity is given by

C = P fp
np

∑
j

(
Pj(t)

P fp
np

− log
Pj(t)

P fp
np

)
+ bBfp

nb

∑
i

(
Bi(t)

Bfp
nb

− log
Bi(t)

Bfp
nb

)
. (S6)

For the 1:1 case, this quantity simplifies to

C = P fp
0

(
P (t)

P fp
0

− log
P (t)

P fp
0

)
+ bBfp

0

(
B(t)

Bfp
0

− log
B(t)

Bfp
0

)
, (S7)

where P fp
0 and Bfp

0 are given by Eqs. (S1) with np = nb = ntot = 0.
Because C is a constant in time, it will also be a constant when P or B are at an extremum. Solving for B at either

extremum of P (i.e. where dP/dt = 0) yields B = Bfp
0 . Similarly, solving for P at either extremum of B yields

P = P fp
0 . Thus, we find that

C = P ext − P fp
0 log

P ext

P fp
0

+ bBfp
0

= bBext − bBfp
0 log

Bext

Bfp
0

+ P fp
0 ,

(S8)

where Bext represents the value of B(t) at its maximum or minimum, and similarly for P ext.
We then estimate the values of Pmin, Pmax, Bmin, and Bmax. For the minimum values, we treat the linear terms

(e.g. P ext) as negligible compared to the logarithmic terms; for the maximum values, we treat the logarthmic terms as
negligible. These approximations yield

C = Pmax + bBfp
0 ,

= −P fp
0 log

Pmin

P fp
0

+ bBfp
0 ,

= bBmax + P fp
0 ,

= −bBfp
0 log

Bmin

Bfp
0

+ P fp
0 .

(S9)

Solving for the extrema and simplifying, we find that the dynamic ratios of B and of P are given by:
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Bmax

Bmin =
C − P fp

0

bBfp
0

exp

[
C − P fp

0

bBfp
0

]
,

Pmax

Pmin =
C − bBfp

0

P fp
0

exp

[
C − bBfp

0

P fp
0

]
.

(S10)

To understand the growth of the dynamic ratio of B for large α/δ and of P for small α/δ, we first recognize that
the positivity of the dynamic ratios implies C > P fp

0 and C > bBfp
0 , so that the dynamic ratios can be approximated as

Bmax

Bmin ≈ C

bBfp
0

exp

[
C

bBfp
0

]
,

Pmax

Pmin ≈ C

P fp
0

exp

[
C

P fp
0

]
.

(S11)

Substituting in from Eqs. (S9), we find

Bmax

Bmin ≈bBmax + P fp
0

bBfp
0

exp

[
bBmax + P fp

0

bBfp
0

]
,

Pmax

Pmin ≈Pmax + bBfp
0

P fp
0

exp

[
Pmax + bBfp

0

P fp
0

]
.

(S12)

Finally, substituting in for the dynamical fixed point values (Eqs. (S1)), we arrive at

Bmax

Bmin ≈

(
Bmax

Bfp
0

+
α− µ

δ

)
exp

[(
Bmax

Bfp
0

+
α− µ

δ

)]
,

Pmax

Pmin ≈

(
Pmax

P fp
0

+
δ

α− µ

)
exp

[(
Pmax

P fp
0

+
δ

α− µ

)]
.

(S13)

For large α (i.e. α ≫ δ), the dynamic ratio of B is therefore dominated by eα/δ . Similarly, for small α (i.e. α−µ ≪ δ),
the dynamic ratio of P is dominated by eδ/(α−µ).

To find the crossover between the two dynamic regimes (one where the dynamic ratio of B is large, and the other
where the dynamic ratio of P is large), we solve for

Bmax/Bmin

Pmax/Pmin = 1 (at crossover). (S14)

Starting from Eq. (S11), this can be approximated as

P fp
0

bBfp
0

≈ exp

[
C

(
1

bBfp
0

− 1

P fp
0

)]
(at crossover). (S15)

While the precise value of C depends on the particular initial conditions chosen, it can be estimated by its value at the
fixed point, C fp = P fp

0 + bBfp
0 . This yields

P fp
0

bBfp
0

≈ exp

[
P fp
0

bBfp
0

− bBfp
0

P fp
0

]
(at crossover). (S16)

The equation x = exp
[
x− x−1

]
is solved by x = 1. Therefore, the crossover occurs at
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P fp
0 ≈ bBfp

0 (at crossover), (S17)

or, substituting in for the dynamical fixed point values (Eqs. (S1)),

α− µ ≈ δ (at crossover). (S18)
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