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Uncovering the mechanism for aggregation
in repeat expanded RNA reveals a reentrant
transition

Ofer Kimchi 1 , Ella M. King 2 & Michael P. Brenner 2,3

RNAmolecules aggregate under certain conditions. The resulting condensates
are implicated in human neurological disorders, and can potentially be
designed towards specified bulk properties in vitro. However, the mechanism
for aggregation—including how aggregation properties change with sequence
and environmental conditions—remains poorly understood. To address this
challenge, we introduce an analytical framework based on multimer enu-
meration. Our approach reveals the driving force for aggregation to be the
increased configurational entropy associated with the multiplicity of ways to
form bonds in the aggregate. Our model uncovers rich phase behavior,
including a sequence-dependent reentrant phase transition, and repeat parity-
dependent aggregation. We validate our results by comparison to a complete
computational enumeration of the landscape, and to previously published
molecular dynamics simulations. Our work unifies and extends published
results, both explaining the behavior of CAG-repeat RNA aggregates impli-
cated in Huntington’s disease, and enabling the rational design of program-
mable RNA condensates.

RNA molecules form structures through base-pairing interactions
between complementary regions. Frequently, a given region of anRNA
molecule will be complementary both to another region on the same
molecule as well as to a different RNA molecule. How is the competi-
tion between forming intra- and inter-molecular contacts decided?

Predicting the outcome of this competition is a major open
question, affecting a wide swath of both in vivo and in vitro phenom-
ena. The effects of this competition are particularly stark in the context
of biological condensates, in which RNA–RNA interactions play a
major, largely understudied, role1–6. While typical condensates often
involve RNA–protein contacts, purely RNA-based aggregation phe-
nomena have been observed both in vitro and in vivo for certain
transcripts associated with repeat expansion disorders7.

The expansion of repeats in certain sections of DNA has been
implicated in a significant number of (primarily) neurodegenerative
disorders including Huntington’s disease, myotonic dystrophy, and
Fragile X syndrome8–10. While the proximate cause of many of these

disorders is the effect of the expansion on the protein sequence,
these expansions can lead to effects at the level of the RNA as
well11–17, including an aggregation transition7,18. In particular, RNA
containing CAG or CUG repeats were found by Jain & Vale to phase
separate depending on the number of repeats present in each
molecule, led by GC stickers binding to one another7. Since all GC
stickers are self-complementary, it is not immediately clear what
leads RNAmolecules in certain parameter regimes to form inter- vs.
intra-molecular contacts at different rates. Aggregation was
observed when the number of repeats per strand exceeded ~30,
roughly the same number of repeats leading to diseases in humans7.
This phenomenon was also observed and further studied in mole-
cular dynamics (MD) simulations of the system by Nguyen et al.19.
These simulations were able to explore the molecular details of the
aggregation transition, at the cost of each simulation (at a different
concentration or number of repeats per strand) requiring ~3months
of supercomputer time.
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Current models are insufficient to explore the properties of the
aggregation transition demonstrated by these studies. State-of-the-art
models of associative polymers either do not include a competition
between intra- and inter-molecular binding (as ismore natural for rigid
proteins and for heterotypic interactions) or (erroneously) assume it
has no qualitative effects on the resulting system20–22.While intra-chain
interactions are typically ignored, exceptions do exist. These include
Dobrynin’s 2004 study extending the Flory–Stockmayer approach to
include intra-chain associations23, and a recent publication by Weiner
et al. which found that self-bonds play a crucial role in determining
phase behavior in a lattice system with heterotypic binding motifs of
varying lengths24.

Here, we derive an analytical model to describe a system of
polymers with self-complementary stickers. Eschewing mean-field-
theory approaches that have dominated the field, we employ a
multimerization-based framework that predicts the entire multi-
merization landscape in addition to the phase behavior, and thus
naturally and explicitly considers the competition between intra- and
inter-molecular contacts25. Quantitative consideration of this compe-
tition reveals that configurational entropy, arising from the multi-
plicity of ways to form bonds, is the driving force for aggregation in
this system. Mapping out the complete phase diagram, we find that as
a result of the competition between intra- and inter-molecular bonds,
the system exhibits a tunable reentrant phase transition as a function
of sequence or temperature. With very strong stickers (or low tem-
peratures) the polymers fold into stable monomers and dimers, and
are more likely to form aggregates at intermediate sticker strengths.
We furthermore find that, for long enough linkers that enable adjacent
stickers to bind, the parity of the number of stickers per strand affects
not only the dimerization transition but the large-scale aggregation
behavior as well. We validate our results by comparing them to a
computational model that enumerates the complete landscape of
intra- and inter-molecular structures that the RNA can form, and by
comparing them to the results of the Jain & Vale and Nguyen et al.

studies7,19. Our work provides a unified framework to explain both
dimerization and aggregation phenomena in CAG repeat systems17,19

and extends these to arbitrary sequences, temperatures, and con-
centrations, thus setting the stage for the construction of novel
materials and new techniques based on programmable RNA
condensates.

Results
Equilibrium behavior is predicted by an analytical model
We consider a nucleic acid sequence comprised of n identical stickers
(Fig. 1a). The stickers are separated by n−1 equally spaced linkers that
do not interact with the stickers. Each linker consists of l nucleotides.
Stickers are self-complementary and bind through base pairing inter-
actions, such that each sticker can be bound to atmost one other. Each
bonded sticker has a free energy contribution of Fb; however, bonds
that create closed loops also have an entropic costΔSloop that depends
on the loop length lloop. This is because nucleotides comprising a
closed loop (such as a hairpin, internal, or multi-loop) are constrained
in the conformations they can adopt. A simple model treating
unbound nucleotides as a polymer random walk estimates that the
entropic cost of forming loops scales logarithmically with the loop
length (see the “Methods” section)26,27. Assuming a characteristic loop
length leff, the effective strength of the sticker interactions is
F ≡ Fb−TΔSloop(leff) (see the “Methods” section).

In this work, we are concerned with the behavior resulting from
such sequences interactingwith one another. Two stickers that bind to
one another may be on the same strand or on two different strands.
Moreover, many strands can be connected to one another through a
chain of suchbonds.We call a group ofm strands connected through a
series of intermolecular bonds a multimer of size m, or an m-mer.
There are many ways a multimer of sizem can form: any combination
of bonds that occur either intra- or inter-molecularly within a group of
m strands, such that each strand is reachable from every other by
following a series of intermolecular bonds, is anm-mer.

Fig. 1 | Model overview. a Model procedure: A repeat RNA or DNA sequence is
converted to a sticker-spacer model, with stickers comprised of self-
complementary regions. Possible structures, including multimers, are then enum-
erated by either computational or analytical methods. Partition functions are then
calculated, leading to a complete description of the equilibrium behavior of the
system, including the equilibriumconcentrations ofmultimers. The system is in the
aggregation regime when concentrations remain constant or increase with multi-
mer size. b Regimes of linker length: The system can exhibit qualitatively different

behavior depending on the length of the inert linkers. For long enough linkers,
adjacent stickers can bind; for short linkers, they cannot because of hairpin size
constraints. Structures visualized using forna37. c Regimes of sticker strength: For
strong stickers, (almost) all of the sticker bonds are typically satisfied; for weak
stickers almost none are; for intermediate strengths, the number of sticker bonds
typically satisfied depends on a combination of the sticker strength and the mul-
tiplicity of structures in which a given number of stickers is bound.
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We consider a system of M strands present in a container of
volume V, such that their concentration is ctot =M/V. We take the
thermodynamic limit ofM and V going towards infinity with their ratio
staying constant. We seek to predict how frequently multimers com-
prised of m strands form in this system, and how this frequency
changeswithm.We define cm as the concentration ofmultimers of size
m, such that

ctot =
X1
m= 1

mcm: ð1Þ

There are two possible regimes for the system: For large m, cm
either decreases or increases with m (Fig. 1a). In the former case, the
system is in the dilute phase, with only small multimers typically
forming. In contrast, if cm increases with m, large aggregates of the
order of the system size dominate the landscape. The aggregation
transition is defined as the crossover point between the regime in
which very large multimers are suppressed, to that in which they are
dominant.

In equilibrium, cm is proportional to the ratio of the partition
functionofm-mers,Zm, to thepartition functionofmmonomers, ðZ 1Þm
(see the “Methods” section). The partition functions are comprised of
three terms:

Zm = e�βðm�1ÞΔF X
Nb

gðn,m,NbÞe�βFNb : ð2Þ

Here, the multiplicity factor g(n,m,Nb) represents the number of dis-
tinct ways tomakeNb bonds connectingm identical strands, each with
n stickers. ΔF is the effective free energy cost of multimerization (see
below) and β = 1/kBT is the inverse thermal energy, where T is tem-
perature. g can be calculated exactly (see the “Methods” section and
Supplementary Note 1) and is qualitatively different depending on
whether the linkers are long enough to allow adjacent stickers to bind
to one another or not (Fig. 1b).

In order to fit experimental data on the prevalence of multiple
nucleic acid strands binding to one another in vitro, nucleic acid
models include a free energy penalty formultimerization. This leads to
the term (m−1)ΔF in Eq. 2. This penalty is motivated by the enthalpic
and entropic costs of nucleic acids binding, including ion effects and
the translational and orientational entropies lost upon association28–30.
This penalty scales linearly with the number of strands in a multimer,
such that each additional strand added to a multimer carries the same
penalty31. See the “Methods” section and Supplementary Note 2 for
further discussion.

The sum in Eq. 2 can be approximated by its dominant term (a
saddlepoint approximation). There are three regimes to consider,
corresponding to strong, intermediate, and weak binding, in which
the sum in Eq. 2 is dominated by large, intermediate, and small
values of Nb, respectively (Fig. 1c). The value of Nb =N

?
b that dom-

inates the sum is that which maximizes a combination of the bond
energy F and configurational entropy g. For example, the strong
binding regime is characterized by bond energy considerations
overwhelming configurational entropy effects, while the inter-
mediate binding regime is characterized by a degree of balance
between the two.

The model is validated by comparing to exact computational
enumeration and previously published results
To validate the analytical model, we constructed a dynamic
programming-based computationalmodel that exactly enumerates Zm
in polynomial time (Supplementary Note 5.2). The analytical model
described above makes three primary approximations compared to
the computational model: (1) it assumes a constant entropy for all
loops; (2) it considers only structures with a given number of bondsNb

(with a single next-order correction term); (3) it uses an approximate
form for g(n,m,Nb) (see the “Methods” section). The computational
model makes none of these approximations, considering all (non-
pseudoknotted; see Supplementary Note 5.1) structures that can form
and including a loop-length-dependent loop entropy term.

Nevertheless, the analytical model closely approximates the exact
computational model, as demonstrated in Fig. 2. The analytical model
requires only one fitting parameter: the normalized effective loop
length lfiteff (see the “Methods” section). That parameter is fit separately
to the regimes allowing and disallowing neighbor binding. Impor-
tantly, it is fit only once for each regime—to the monomer partition
function with strong binding—and not separately for different values
of n, m, or Fb. We demonstrate quantitative agreement between the
analytical and computational models in Fig. 2, and in Supplementary
Fig. 5.

We further sought to compare the model’s predictions to pre-
viously published results, namely the MD simulations performed by
Nguyen et al.19. Those simulations examined 64 CAG-repeat RNA
strands with varying numbers of repeats per strand and of RNA con-
centrations. We considered the same system of CAG sequences, using
the value Fb = −10 employed in the MD simulations and no fitting
parameters beyond the aforementioned single parameter fit to the
computational model. We enumerated the monomer and dimer

a

b

Fig. 2 | Analytical model demonstrates good agreement with computational
results. a As a function of number of stickers per strand: Partition functions and
partition function ratios are plotted with respect to n using the exact computa-
tional (solid) and simplified analytical (dotted) models. A single fitting parameter
was used for the analytical models, fit to themonomer partition function (top row,
blue). The slight discrepancy in the analytical prediction for large m and n dis-
allowing neighbor bonds is primarily due to the heuristic approximation of
g(n,m,Nb) from g(nm, 1,Nb) used. b As a function of binding strength: The ratio of
the pentamer partition function to that of five monomers is plotted; similar results
hold for any othermultimer chosen. The analyticalmodelpredictions are separated
into three regimes: strong (green), intermediate (yellow), and weak (red) binding.
Vertical dashed lines separate where different regimes are expected to provide the
best agreement and are calculated as the values of Fb such that N?

b =N
max
b � 1 and

N?
b =N

min
b + 3. A single fitting parameter—the same one from panel (a)—is used.
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partition functions computationally, and used the analytical model to
extrapolate up to m = 64, the number of strands used in the MD
simulations. The extrapolation was performed by fitting the single
parameter to our computational results for m = 1, and using

Supplementary Eqs. S38 and S48 to obtain the results for m > 2. The
primary difference between our model predictions and those of MD
simulations is that the former is purely equilibrium, while the latter is
decidedly not so, even after significant simulation time. (A secondary
difference is that the former considers an infinite system of given
concentration, while the latter considers a finite number of strands).

We plot the propensity of the system to form aggregates as a
function of n and ctot in Fig. 3. Following ref. 19, we define multimers of
size 2 ≤m ≤ 4 as oligomers; however, this ensemble is dominated by
dimers, with trimers and tetramers forming at very low fractions. We
find that for certain concentrations, the system forms either mono-
mers or dimers depending on the parity of n, in agreement with
experimental results17; however, this parity does not significantly affect
aggregation. We plot the results of Nguyen et al. on top of our pre-
dictions as colored points, finding excellent quantitative agreement
between the two.

A reentrant phase transition governs aggregation as a function
of sticker strength
For very low temperatures or strong stickers, the ensemble of multi-
mers is dominated by small structures such as dimers, in which all
bonds can be satisfied. However, for intermediate sticker strengths,
the configurational entropy gain of having a few unsatisfied bonds
exceeds the energetic cost. This configurational entropy grows with
multimer size, driving the system to aggregate. Finally, for very weak
stickers or high temperatures, the structures melt. This phenomenon
corresponds to a reentrant phase transition. We demonstrate this
transition in our computational model in Fig. 4, enumerating up to
m = 15. As shown in the figure, the twodilute phases at strong andweak

Fig. 3 | Landscape of CAG repeats. The equilibrium fraction of strands folded into
monomers, oligomers (2–4-mers; primarily dimers), and aggregates are shown and
compared to Nguyen et al.’s molecular dynamics (MD) simulation results. As the
Nguyen et al. simulations used a sticker strength of Fb = −10 kcal/mol19, we used the
same sticker strength, with no fitting parameters to the simulations whatsoever.
The MD simulation results are plotted as points in the aggregates panel, with blue
points representing conditions forwhich aggregationwas found, and redpoints for
those in which it was not. We note that each of these points is a separate simulation
taking 3 months of supercomputer time19, in comparison to our analytical model
for the entire landscape. In this system, neighbor binding is disallowed, monomers
and dimers are in the strong binding regime, and multimers of m ≥ 3 are in the
intermediate regime. Aggregation is predicted for large concentrations and num-
bers of stickers per strand. Dimerization is less common as n increases, while
dominant for small values of n, especially odd values.

Fig. 4 | A reentrant transition as a function of sticker strength. Enumerating the
exact partition functions up to m = 15 with the computational model, we find a
reentrant transitionwith respect to Fb inboth the regime allowingneighborbinding
(panel a; n = 8, l = 4, ctot = 8mM is shown) and the regime disallowing neighbor
binding (panel b; n = 8, l = 1, ctot = 4mM is shown). The high concentration used is a
result of the lack of Mg2+ considered explicitly in the model; see the “Discussion”
section. Aggregates (defined asm ≥ 5-mers in accordancewith ref. 19) aremost likely
to form for intermediate sticker strengths, since very strong stickers lead to stable
monomers (red) or dimers (dimers, trimers, and tetramers comprise the orange
curve). Although aggregates are suppressed in both strong (green background;
left) and weak (gray background; right) binding regimes, the molecular structures

of monomers and dimers in these regimes are quite different: in the former, all or
nearly all bonds are satisfied in a typical molecule, while very few bonds are typi-
cally satisfied in the latter regime. For this reason, the strong binding regime of the
short linker case (i.e. disallowing neighbor binding) is predicted to contain a large
concentration of dimers (which can satisfy all sticker bonds), and few monomers
(which cannot). In the long linker case (i.e. allowing neighbor binding), for even
values of n, monomers are also able to satisfy all bonds and are thus present at high
concentrations in the strong binding regime. Top axis shows example sequences
for RNA (r) and DNA (d), and their sticker strengths as calculated by the nearest-
neighbor model, enabling a direct match from sequence to model predictions29,30.
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binding regimes are quite different from one another. In the strong
binding regime, (almost) all bonds are satisfied in a typical structure,
mainly through intramolecular interactions or dimerization. In the
weak binding regime, (almost) no bonds are typically satisfied.

We next explored whether this reentrant transition was merely a
small m effect. We employed the analytical model, for which we can
consider arbitrarily large values ofm. Evenwhen consideringm→∞, we
find a reentrant transition in the threshold concentration above which
the system is expected to form aggregates, ctotthresh (see Supplementary
Note 4), as shown in Fig. 5a. This transition is especially prominent for
short linkers that disallow neighbor binding since the configurational
entropy of dimers in this regime is quite limited (regardless of n, only
one dimer configuration can satisfy all stickers). For longer lin-
kers (allowing neighbor binding), this transition is most pronounced
for even values of n for which monomers can satisfy all their own
bonds, although it is apparent also for odd n, for which dimers can
satisfy all bonds.

The behavior shown in Fig. 5 is in agreement with what we would
expect from configurational entropy concerns alone (Supplementary
Fig. 6). That the propensity of the system to aggregate occurs at more
negative values of βF, and is more pronounced, for the case of dis-
allowing neighbor binding than for the case of allowing neighbor
binding, is predicted by the different forms of the configurational
entropy in these two regimes. Similarly, larger values of n increase the
propensity of the system to aggregate because of their effect on
configurational entropy, rather than any enthalpic considerations
(Supplementary Fig. 6).

Discussion
In this work, we have considered a simple model of competition
between intra- and inter-molecular binding: a polymer with n identical
evenly spaced self-complementary stickers. We have shown that the

system is characterized by three parameters: n, the number of repeats
per strand; βF, the effective strength of each bond accounting for the
loop entropy cost; and ctote−βΔF, a dimensionless concentration that
accounts for multimerization cost.

Our model computes the prevalence of all possible multimers that
can form, considering both intra-strand and inter-strand contacts. Our
framework quantitatively recapitulates previously published MD simu-
lation results, each data point of which required 3 months of super-
computer simulation time19. We substantially extend these results to
arbitrary sequences, temperatures, and concentrations, and to arbi-
trarily large multimers (i.e. aggregates) in an analytical framework.

In this system, aggregation is not necessarily predicted as the
regime where the most possible bonds are satisfied, as bonds can be
satisfied by intramolecular as well as by intermolecular contacts.
Instead, aggregation is predicted by the relative stability of the
aggregate compared to smaller multimers. The stability of each
structure is a function of three terms, as seen in Eq. 2: (1) the number of
stickers bound (each contributes F to the free energy); (2) the number
of strands in the structure (each contributes μ +ΔF, where μ is the
chemical potential); and (3) the configurational entropy of the struc-
ture. This last term contributes � logðgÞ=β to the free energy, where g
is the number of ways to satisfy the given number of bonds with the
given number of strands in the structure.

This last term is the driving force for aggregation in this system.
Aggregates are no more stable than dimers in terms of the first term,
the possible number of stickers bound (both are able to satisfy all
stickers). Aggregates are further penalized by the second term, the
multimerization cost. If these two termswere the only terms in the free
energy, we would not see any aggregates. It is the third term, the
configurational entropy, that drives aggregation. Larger multimers are
able to satisfy their bonds in many more configurations than a corre-
sponding collection of smaller multimers, leading to an enormous

Fig. 5 | Phase diagram. a Reentrant transition in the analyticalmodel: The analytical
model enables enumeration up to arbitrarily large m, and reveals a reentrant
transition. With high enough concentrations of RNA, aggregation is always possi-
ble; however, for certain concentrations, the analytical model predicts the system
will undergo a reentrant phase transition in agreement with computational results
(Fig. 4). Panel a shows slices for certain values of n through the complete phase
diagram shown in panel (b). Parity of n affects aggregation phenomena for the
system allowing neighbor binding (LHS). b Complete phase diagram: The complete
phase diagram as predicted by enumeration up to arbitrarily large m with the

analytical model is displayed. The normalized concentration needed to achieve
aggregation is displayed as a function of n and βF. The reentrant transition is
especially apparent for short linkers (RHS) as well as for long linkers with even
values of n (LHS). Systems with long linkers typically require higher concentrations
to aggregate than those with short linkers, since monomers are typically more
stable in the former case. Discontinuities are due to the model’s approximation of
an abrupt transition from the strong to intermediate binding regimes for mono-
mers. ctotthresh ismade dimensionless by dividing by themultimerization cost eβΔF (see
Supplementary Note 2).
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entropic benefit in forming aggregates. This has been described as a
competition between configurational and translational entropies in
other contexts24,32. In our system, the benefit due to g peaks when
most, but not all, stickers are satisfied (Supplementary Fig. 6).

This behavior leads to a reentrant phase transition. For −βF≫ 1,
the number of bonds satisfied is the primary consideration. Dimers are
able to satisfy all their bonds, and themultiplicity benefit of aggregates
is not sufficiently large when all bonds are satisfied, suppressing
aggregation in this regime. Aggregation is also suppressed for very
positive values of βF, which as a result of loop entropy costs can occur
evenwhen the sticker binding itself is favored (i.e. Fb < 0). However, for
intermediate values of βF—when dimers prefer having some bonds left
unsatisfied—the configurational entropy benefit of forming aggregates
is overwhelming. Aggregates form at 1–2 orders of magnitude lower
concentrations in this regime than in the strong binding regime.

The predicted aggregation transition of the system is completely
described in Fig. 5b. We plot the (dimensionless) threshold con-
centration ctotthresh as a function of n and βF. Aggregation is more pre-
valent for short linkers (disallowing neighbor binding) than for longer
linkers (allowing neighbor binding). For short linkers, small structures
are quite constrained in the number of ways they can satisfy all of their
bonds, leading the differential configurational entropy benefit of
aggregates to grow quite large. For longer linkers, smaller structures
are more stable since the corresponding multiplicity is much larger.
For similar reasons, the reentrant phase transition ismost pronounced
with short linkers. For long linkers, even values of n demonstrate a
more pronounced reentrant transition than odd values, since their
competition is betweenmonomers—with nomultimerization penalties
—and aggregates. In all other cases, the reentrant transition is primarily
due to competition between dimers and aggregates. For short linkers,
the parity of n is found in our model to affect monomerization vs.
dimerization in agreement with previously published results17, but has
almost no effect on aggregationproperties. The reason is that for short
linkers and strong stickers, dimers behave similarly regardless of the
parity of n: both odd and even n can form a dimer satisfying all bonds
with only one configuration.

Although there is a qualitative difference between short linkers of
l< 3 and long linkers of l≥ 3, within each regime, increasing the linker
length leads to larger values of ΔS and weaker binding. Decreasing the
persistence length, for example by changing ionic conditions, would be
expected to lead to a similar result. These effects and the predicted
phase diagram as a whole (Fig. 5b) could be at least qualitatively tested
experimentally by replicating the Jain & Vale experiments for multiple
sequences with different sticker strengths and linker lengths and mea-
suring the change in the concentration needed to form aggregates for
the different conditions. The available published data is in good agree-
ment with our predictions, in that larger values of n show a greater
propensity for aggregation in both experiments and our model
predictions7.

Our results bear similarities to the so-called “magic number effect"
whereby for heterotypicmixtures, aggregation is suppressedwhen the
number of binding sites in one species is a small integermultiple of the
other’s32,33. In such systems, small stable clusters can form with all
bonds satisfied. In our homotypic system, dimers can always exhibit a
magic number-like effect for strong stickers, and in the regime in
which neighbor binding is allowed, for even n, monomers can as well.
In fact, a weak reentrant transition has been observed in some simu-
lations of the magic number effect in heterotypic systems (see Fig. 3A
of ref. 34). Our results suggest that a reentrant transition may be a
generic feature of themagic number effect and that the strength of the
reentrant behavior may decay the more molecules are involved.

Our model has several limitations. To make the expression ana-
lytically tractable, our formalism makes a heuristic approximation for
the multimer multiplicity factor g in the regime disallowing neighbor

bonds. For similar reasons, we were unable to analytically explore the
weak binding regime, applicable for systems where the loop entropy
cost of forming stickers outweighs their energetic benefit. A limitation
of our model’s physiological applicability is that we did not explicitly
consider magnesium. Magnesium can act as a bridge between nega-
tively charged RNA molecules such that even in the absence of base
pairing, Mg–RNA mixtures can form aggregates18,35. Experimental
results thus rely on magnesium aiding the aggregation process7.
However, the MD simulations to which we compare here do not
explicitly consider magnesium19 and the high concentrations required
for the system to aggregate (e.g. Fig. 3) are the result. Tofirst-order, the
effects of magnesium could be accounted for in our model as mod-
ifying ΔF (along with Fb), which effectively modifies the concentra-
tions, as concentrations only enter themodel as ctote−βΔF. For clarity, we
opted to leave ΔF unmodified; therefore, the high concentrations we
consider should be significantly decreased for a system including
magnesium.

While non-equilibrium effects are relevant in these systems, our
analysis is entirely an equilibrium prediction. Indeed, kinetic trapping
appears to be the biggest experimental hurdle to testing our reentrant
phase predictions. At the same time, the results of decidedly out-of-
equilibrium MD simulations19 show excellent quantitative agreement
with our equilibrium predictions (Fig. 3). For this reason, it is likely that
out-of-equilibrium effects are not the dominant factor in repeat RNA
aggregation behavior. In vivo RNA aggregates are even more fluid-like
and dynamic than in vitro aggregates, for reasons that remain largely
unclear but appear to be the result of active enzymes in the cell7. Future
work may consider how such active processes affect the aggregation
properties, and the connection between in vivo non-equilibrium steady
states and the equilibrium steady state discussed here.

Given the radical simplicity of themodel used here, there is a host
of extensions to consider. For example: How does this model interact
with complex coacervation, as when including polycations in the
solution? How does a polymer pattern with multiple orthogonal
stickers behave?Howdomultiple different polymers,with both cis and
trans binding, interact with one another? And how do physiological
RNA molecules use the principles explored here to control their
aggregation properties?

Our work demonstrates that the competition between intra- and
inter-molecular binding can lead to remarkable and (perhaps) unin-
tuitive behavior. Our results mapping the control knobs for this phase
behavior create a framework for the study of RNA–RNA interactions in
in vivo biological condensates and set the stage for the construction of
novel materials and new techniques based on programmable RNA
condensates.

Methods
Partition functions determine equilibrium behavior
Weconsider a nucleic acid sequence comprised ofn stickers separated
by n−1 linkers (Fig. 1a). Stickers are self-complementary and bind
through base pairing interactions, such that each sticker can be bound
to at most one other sticker. The strength of the sticker interactions,
Fb, is determined by the sequence of the stickers; for example, an RNA
GC sticker with A nucleotide linkers in standard conditions has
Fb = −6.4 kcal/mol (or, for DNA, −1.4), while a GCGC sticker has
Fb = −12.2 kcal/mol (−5.8 for DNA). These are calculated using the
classic nearest-neighbor model for RNA or DNA base-pairing
interactions29,30. The linkers, each of which is of length l, are inert.

We seek to predict how frequently multimers comprised of m
strands form, and how this frequency changes with m. Aggregation
occurs in the parameter regime where the concentration of multimers
comprised ofm strands, cm, increases withm. cm is defined as the sum
of all structures that have m strands connected by base pairing inter-
actions. In equilibrium, cm is proportional to the partition function of
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m-mers, Zm:

Zm =
X
σm

e�βFðσmÞ: ð3Þ

Here, σm is a structure comprised ofm strands linked by base pairing,
including potential intramolecular bonds; and β = 1/kBT where kB is
Boltzmann’s constant and T is the temperature measured in Kelvin.
F(σm) is the free energy of the structure, given by29

FðσmÞ= FbNbðσmÞ+ ðm� 1ÞΔGassoc � T
X
loops

ΔSloopðlloopÞ, ð4Þ

whereNb(σm) is the number ofbonds in the structure, andΔGassoc is the
hybridization penalty associated with intermolecular binding (dis-
cussed below). Each closed loop of length lloop leads to an entropic
penalty of ΔSloop(lloop), associated with the decrease in three-
dimensional configurations of the single-stranded region of the loop
compared to a free chain, given by26,27

ΔSloopðlloopÞ= kB ln vs +
3
2
ln

3
2πb lloop

 !" #
, ð5Þ

where vs is the volume within which two nucleotides can bind, and b is
the persistence length of single-stranded regions. This equation treats
the single-stranded loop as an ideal chain. An excluded volume term
vm2 can be added to Eq. 420 but we assume v is small enough that this
term is negligible except for very large m (see Supplementary Note 4
for further discussion).

Given the partition functions Zm for all m-mers, we can calculate
the equilibrium concentrations ofm-mers, cm, for allm, by solving a set
of m simultaneous equations. Zm affects physical observables such as
cm only through the ratio Zm=Z

m
1 , describing, in essence, the pro-

pensity ofm strands to form anm-mer as opposed tommonomers25,31:

cm =
Zm

Zm
1
cm1X

m

mcm = ctot
ð6Þ

where the concentrations aremade dimensionless by normalizing by a
reference concentration (see Supplementary Note 2) and ctot is the
total concentration of strands added to solution. In short, this equa-
tion arises from cm = Zmemβμ where μ is the chemical potential and the
fugacity eβμ = c1/Z1 in equilibrium25.

Solutions to Eq. 6 have two typical regimes. In one, cm decays
exponentially with m. On the other, cm grows with m (until excluded
volume effects begin to dominate). The latter regime corresponds to
aggregation (Fig. 1a).

An analytical model for the partition functions
The calculation of Zm is too computationally intensive to perform
directly, by explicitly enumerating all possible structures that can
form, as the number of possible structures grows exponentially with n
and m. In order to predict phase behavior for a wide range of
sequences and experimental conditions, we develop an analytical
framework for computing Zm. This framework enables us to search a
broad parameter space and tune phase behavior in the system. We
validate our analytical model against a computational model that
exactly calculates Zm with a dynamic programming approach (Sup-
plementary Note 5.2) thus providing an exact baseline model for
comparison.

We rely on one major assumption to enable an analytical
approach: we approximate the loop entropies as independent of loop
length; or equivalently, we assume that the model is dominated by

loops of one characteristic length, leff. This length depends on the
length of the linkers in the system, l. This approximation is reasonable
because of two factors. First, because of the logarithmic dependence
of ΔSloop on loop length (Eq. 5), moderate heterogeneities in loop
length lead to only small differences in ΔSloop. Second, because the
typical number of loops in a multimer scales linearly with the size of
the multimer (see Supplementary Note 3), we expect similar levels of
heterogeneity in loop length independent of the size of the multimer.
This approximation is expected to break down for very large n and
weak binding (Fb > 0), in which case the few loops that typically form
will likely have a broad distribution of lengths; this regime is not
considered here.

With this approximation, for monomers, each bond provides
constant free energy of F = Fb − TΔS, where ΔS =ΔSloop(leff). Since the
number of loops is given by Nb−(m−1), we also define
ΔF ≡ (ΔGassoc + TΔS). This quantity enters Eq. 6, such that it allows us to
redefine a rescaled concentration ce−βΔF (also, see Supplementary
Note 2).Without rescaling concentration, the partition function Zm can
thus be written as

Zm = e�βðm�1ÞΔF X
σm

e�βFNbðσmÞ

= e�βðm�1ÞΔF X
Nb

gðn,m,NbÞe�βFNb
ð7Þ

where the multiplicity factor g(n,m,Nb) represents the number of
distinct ways to make Nb bonds connecting m identical strands, each
with n stickers. This is identical to Eq. 2.

Thismultiplicity factor ismost straightforward to consider for the
case of monomers. We make the approximation that the contribution
of pseudoknots to the partition function is negligible due to their high
entropic cost (see Supplementary Note 5.1). Our goal is therefore to
calculate the number of ways to form non-pseudoknotted structures
containing Nb bonds given a strand of n stickers. For monomers, the
multiplicity can be calculated exactly. However, the result depends on
whether adjacent stickers are able to bind to one another or not. For a
long enough linker length (≥3 nts for the case of RNA), neighboring
stickers can bind; for shorter linker lengths (as, for example, for CAG
repeats), they cannot (see Fig. 1b). As derived in Supplementary
Note 1.1,

gðn, 1,NbÞ=
n!

ðn�2NbÞ! ðNb + 1Þ!Nb !
if adjacent stickers can bind

ðn�NbÞ! ðn�Nb�1Þ!
ðn�2NbÞ! ðn�2Nb�1Þ! ðNb + 1Þ!Nb !

otherwise

8<
:

ð8Þ

The top line (allowing neighbor binding) is simply calculated as

the product of two factors: n
2Nb

� �
(the number of ways to choose

2Nb bound stickers from n possibilities); and the Catalan number
CNb

(the number of non-pseudoknotted ways to construct bonds

between the chosen stickers). The bottom line (disallowing
neighbor bonds) requires a brief additional calculation to derive
(Supplementary Note 1.1).

Calculating g(n,m,Nb) from g(n, 1,Nb) also dependsonwhether or
not adjacent stickers can bind (see Supplementary Note 1.2). While the
exact calculation requires large numbers of sums with no closed-form
solution, a close approximation is given by

gðn,m,NbÞ≈
gðnm, 1,NbÞ

m if adjacent stickers can bind
gðnm+αðm�1Þ, 1,NbÞ

m otherwise

(
ð9Þ

where α ≈0.42, representing an additional heuristic for the case of
disallowing neighbor binding compared to the case of allowing such
binding. The value of α =0.42 used is a heuristic estimate that is an
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especially good fit to the strong interaction regime, and other
approximations may improve it (see Supplementary Fig. 1). The factor
of 1/m corrects for overcounting due to symmetry (Supplementary
Note 1.2.3; see also Supplementary Fig. 2)36.

Given expressions for the multiplicity factor, the partition func-
tions (Eq. 7) are now in principle computable. However, the full sum in
that equation remains too computationally intensive to be useful. We,
therefore, turn to a saddlepoint approximation: sums of exponentials
are typically dominated by their maximum terms, and Eq. 7 is no
exception.

In order to find the maximum term, there are three cases to
consider, corresponding to physicallymeaningful distinctions (Fig. 1c).
In one regime, the “strong binding" regime, the ensemble is dominated
by structures that maximize the bond energy, and the sum is domi-
nated by the last terms (Nb =N

max
b ). In the second, the “intermediate

binding" regime, the ensemble is dominated by structures that max-
imize a combination of the bond energy and configurational entropy
measured by g, and the sum is dominated by an intermediate-term
(Nb =N

?
b). In the third, the “weak binding" regime, the ensemble is

dominated by structures that have almost no bonds, and the sum is
dominated by the first terms (Nb =N

min
b ). These three cases must be

treated separately: in the strong and weak binding regimes, the dis-
crete nature of the sum is crucial, while in the intermediate regime, the
sum can be well-approximated by an integral. The boundary between
these regimes occurs approximately when N?

b =N
max
b � 1 or

N?
b =N

min
b + 3. For Figs. 3 and 5,we set the boundarybetween the strong

and intermediate regimes atN?
b =N

max
b � 1

4 (allowing neighbor binding)
and N?

b =
n
2 � 2 (disallowing neighbor binding).

After computing the dominant term of the sum, the next-order
correction to Zm comes from either considering the next-dominant
term (strong and weak regimes) or the curvature at the maximum
(intermediate regime); see Supplementary Note 3 for more details.

When comparing between the analytical and computational mod-
els, we use a single fitting parameter lfiteff , which tunes the normalized
effective loop length. That parameter is fit separately to the monomer
partition functions allowing and disallowing neighbor binding, but is
kept constant for all values of m. For different binding strengths, a dif-
ferent fraction of stickers will be bonded, leading to a different value of
leff. Rather than having a separate fitting parameter for each parameter
set, we only fit once (to monomers) in each of the two linker length
regimes (allowing and disallowing neighbor binding). We then assume
that leff changes linearly with the fraction of stickers bonded, leading to:

leff =
nm
2N?

b
lfiteff : ð10Þ

We fit lfiteff to the strong binding regime (Fig. 2) for which leff ≈ l
fit
eff .

We find intuitively reasonable values for lfiteff . When using l = 1 (dis-
allowing neighbor binding), we find lfiteff = 4:3 nucleotides. This value is
in between the length of an internal loop formed by two individual
linkers (4 nucleotides) and the length of a hairpin loop formed by two
linkers and a sticker (5 nucleotides). When using l = 4 (allowing
neighbor binding), we find lfiteff = 7 nucleotides. This value is also in
between the lengthof an internal loop formedby two individual linkers
(10 nucleotides) and the length of a hairpin loop formed by a single
linker (5 nucleotides).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
All code used to generate the results and figures in this study can be
found at https://github.com/ofer-kimchi/RNA-aggregation.
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Supplementary Note 1 Calculating the multiplicity factor g

In this section we describe the calculation of g(n,m,Nb), the number of distinct possible combinations of Nb bonds
that can be formed with m strands, each with n stickers. We first derive g(n, 1, Nb), i.e. the monomer case. We
consider both the case in which adjacent stickers can bind to one another, and the case in which they cannot. We then
consider multimers, deriving both exact and approximate expressions for g(n,m,Nb). We also explain the origin of
the 1/m term in g(n,m,Nb), and its connection to symmetry factors.

1.1 The calculation of g for monomers

1.1.1 Allowing neighbor binding

The question we pose here is as follows: given n binding sites, each of which can be bound to at most one other
binding site, how many non-pseudoknotted ways are there of constructing Nb bonds between the sites?

There are
(

n
2Nb

)
ways of choosing the 2Nb bound sites out of the n possibilities. Then, there are CNb

distinct ways
of constructing Nb non-pseudoknotted bonds between 2Nb sites, where Ci is the ith Catalan number, defined as

CNb
=

1

Nb + 1

(
2Nb

Nb

)
. (S1)

Combining these expressions, we find that

ga(n, 1, Nb) =
n!

(n− 2Nb)! (Nb + 1)! Nb!
(S2)

where the subscript a refers to the fact that the expression is the result of allowing neighbor binding.

1.1.2 Disallowing neighbor binding

If the linker is too short to allow binding between adjacent stickers, the resulting expression is more complicated. To
our knowledge, this case has not been explored previously, and so we derive it here.

We start with the result allowing neighbor binding, ga derived in the previous section. We find gd (“d” for “disal-
lowing” neighbor binding) by taking ga and subtracting out the number of structures with at least one pair of neigh-
boring stickers bound.

There are n−1 possible neighbor bonds, and for each, there are ga(n−2, 1, Nb−1) ways to arrange the remaining
Nb − 1 bonds. There thus appear to be (n− 1)ga(n− 2, 1, Nb − 1) ways to make Nb bonds with n stickers, including
at least one neighbor bond. Our answer appears to be given by ga(n, 1, Nb)− (n− 1)ga(n− 2, 1, Nb − 1).

However, there is an error in that calculation, since some structures have two neighbor bonds! These structures
were counted twice: once when fixing the first neighbor bond, and once when fixing the second. We therefore need to
add back in the number of structures that have at least two neighbor bonds. Using a similar reasoning to previously,
we get that the number of such structures appears to be 1

2 (n − 2)(n − 3)ga(n − 4, 1, Nb − 2). (We derive this result
more fully below, but it perhaps makes intuitive sense: the division by two corrects for the fact that it doesn’t matter
in what order you determine the two bonds). Our answer thus appears to be

ga(n, 1, Nb)− (n− 1)ga(n− 2, 1, Nb − 1) +
(n− 2)(n− 3)

2
ga(n− 4, 1, Nb − 2). (S3)

You may already see where this is going. That calculation itself had a similar error to the first: we now overcounted
the number of structures with at least 3 neighboring bonds. Continuing this procedure further, we find that

gd(n, 1, Nb) = ga(n, 1, Nb) +

Nb∑
i=1

(−1)
i

(
n− i

i

)
ga(n− 2i, 1, Nb − i). (S4)

The result of this sum is given by

gd(n, 1, Nb) =
(n−Nb)! (n−Nb − 1)!

(n− 2Nb)! (n− 2Nb − 1)! (Nb + 1)! Nb!
(S5)
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This result is exact and was validated by comparing to explicit computational enumeration.
To derive the factor of

(
n−i
i

)
, consider for example the case of i = 2: how many ways are there to specify two

neighbor bonds? One of the two neighbor bonds comes first. If that bond is between the first and second stickers, there
are n− 3 ways to place the remaining neighbor bond. If that bond is between the second and third stickers, there are
n− 4 ways to place the second neighbor bond. Continuing on, there is only one place to place the remaining neighbor
bond if the first bond is between the (n− 3)rd and (n− 2)nd stickers. Thus, the total number of ways to place the two
bonds is

n−3∑
j=1

(n− 2− j) =
(n− 2)(n− 3)

2
=

(
n− 2

2

)
. (S6)

The general expression of
(
n−i
i

)
can be derived along similar lines.

1.2 The calculation of g for multimers

1.2.1 Allowing neighbor binding

If neighbors are allowed to bind, then the number of ways of constructing bonds between strands in a multimer is
the same as the corresponding number for a monomer with the same total number of stickers. The result is therefore
ga(n,m,Nb) = ga(nm, 1, Nb).

One caveat here is that some of the bond combinations do not actually lead to a connected multimer. For example,
ga(n,m,m − 2) should always be zero – there is no way to make a multimer comprised of m strands with m − 2
bonds – but ga(nm, 1,m− 2) need not be zero. Correcting the expression for g to compute only connected multimers
is the subject of a later section, but for the most part, this correction is negligible in the regimes we consider in this
work.

Another caveat – of considering distinct structures, is also considered in a later section, and leads to a correction
of 1/m in the expression above.

1.2.2 Disallowing neighbor binding

If neighbors are not allowed to bind, then gd(nm, 1, Nb) slightly underestimates gd(n,m,Nb), even ignoring the
two caveats mentioned above. This is because the last sticker of one strand is actually allowed to bind to the first
sticker of the next, though this binding would be disallowed in a monomer. If we consider gd(nm+ (m− 1), 1, Nb),
that is a slight overestimate: although it corrects for the previous issue, the new ”phantom” stickers are allowed
to bind in the monomer approximation, although they are not for the real multimer. An intermediate estimate, of
gd(nm+α(m−1), 1, Nb) appears to provide a reasonably good approximation for the true value of gd when α ≈ 0.42
(see Supplementary Fig. 1. The value of α = 0.42 used is a heuristic estimate that especially well-fits the strong
interaction regime, and other approximations may improve it.

In the remainder of this section, we will derive an exact expression for gd(n,m,Nb). This derivation proceeds
along similar lines to the derivation of the monomer case.

There are ga(n,m,Nb) = ga(nm, 1, Nb) ways of making Nb non-pseudoknotted bonds with nm stickers, includ-
ing neighbor pairings. There are m(n− 1) ways to fix one neighbor bond, and ga(nm− 2, 1, Nb − 1) ways to arrange
the remaining bonds given one fixed bond. Therefore, it would appear that the result is ga(nm, 1, Nb) − m(n −
1)ga(nm− 2, 1, Nb − 1). However, some of the ways of rearranging the remaining bonds themselves have a neighbor
bond, and so we counted those structures twice: once when fixing the first neighbor bond, and once when fixing the
second. Following this through, as in the monomer case, we have that

gd(n,m,Nb) = ga(nm, 1, Nb) +

Nb∑
i=1

(−1)
i
t(n,m, i)ga(nm− 2i, 1, Nb − i) (S7)

where t(n,m, i) is the number of ways to fix i neighbor bonds, givenm strands, each of length n. We found previously
that t(n, 1, i) =

(
n−i
i

)
. For general m,
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Supplementary Figure 1: Approximating gd(n,m,Nb) for m > 1. The exact calculation of gd(n,m,Nb) (S8) is
shown alongside the heuristic approximations gd(nm+ α(m− 1), 1, Nb) for α = 0, 0.42, and 1. The range of n and
m chosen was limited by the computation time of the full sum. α = 0.42 shows good agreement with the full sum
over this range especially for large values of Nb, which are most relevant in the strong interaction regime. A better fit
may be found by modulating α as a function of Fb, or perhaps with a different model.

t(n,m, i) =

(
m

1

)
t(n, 1, i) +

(
m

2

) i−1∑
j=1

t(n, 1, j)t(n, 1, i− j)+

(
m

3

) i−2∑
j=1

i−2∑
k=1

t(n, 1, j)t(n, 1, k)t(n, 1, i− j − k) + ... (S8)

since there are t(n, 1, i) ways to fix i neighbor bonds on a single strand and
(
m
1

)
ways to pick a single strand out of

m strands; there are t(n, 1, j) ways to fix j neighbor bonds on a single strand, t(n, 1, i− j) ways to fix the remaining
bonds on another strand, and

(
m
2

)
ways to choose the two strands; and so on.

While the sum in t(n,m, i) can be written more succinctly in terms of generating functions, we are not aware
of any simple closed-form formula for gd(n,m,Nb). We therefore rely on the heuristic described previously for our
analytical calculations.

1.2.3 A note about symmetry factors and g

In this work, we have used g(n,m,Nb) to describe the number of distinct possible combinations of Nb bonds that can
be formed with m strands, each with n stickers. It is this italicized word distinct that leads to the factor of 1/m in
g(n,m,Nb) that was missing in the previous sections – it ensures identical structures are counted only once. However,
this factor leads to results that are apparently non-sensical: it is possible for g to result in a fractional output. As we
will explain in this section, this is not an error, and in fact accounts for the symmetry-factor-based entropic cost of
forming symmetric structures.

We begin by considering the expression for ga derived previously (identical arguments can be made for gd).
ga(nm, 1, Nb) describes the number of – not necessarily distinct – possible combinations of Nb bonds that can be
formed with m strands, each with n stickers, treating an m-mer the same as a monomer m times longer.

ga overcounts multimers comprised of m strands by a factor of m. To demonstrate this, let us a consider one
particular structure, for example, the structure shown in Supplementary Fig. 2a. The panel shows a particular trimer
structure of n = 3 CAG repeat strands. In panel b, we show that this trimer can be depicted in six (or 3!) different

4



Supplementary Figure 2: Repeat RNA enumeration multiplicity. a: A trimer of n = 3 CAG repeat strands as
depicted by LandscapeFold is shown. b: Structures can be depicted by treating each sticker as a site (black lines) that
can be connected to at most one other site (blue arcs show connections). The structure from panel a can be depicted in
six ways corresponding to permutations of the strands. Three of the ways (right column) appear pseudoknotted (they
have intersecting arcs) though the structure contains no pseudoknots. c: Another trimer of n = 3 CAG repeats is
shown. d: This trimer can only be depicted in two ways in the abstraction, one of which appears pseudoknotted. See
main text for discussion.

ways in the enumeration performed by ga, corresponding to different permutations of the strands. However, three of
these (shown on the right) have intersecting arcs and therefore are not considered as part of ga’s enumeration. For
4-mers, there are 24 ways to enumerate each structure, but only 4 of these are considered within ga as the rest appear
as pseudoknots. Thus, in order to count the contribution of each structure to the partition function only once, we need
to divide the contribution of each m-mer structure to Z by m. This corresponds to the number of cyclic permutations
of the strands [1].

Some structures though are only enumerated once in ga. In fact, structures that contain an R-fold symmetry are
enumerated m/R times. However, these should should indeed be counted with a partition function penalty of 1/R
(or a free energy penalty of kBT log(R)) [1]. This symmetry factor correction arises from the entropic difference
between structures with and without these symmetries [2]. An example of such a structure is shown in panels c-d
of Supplementary Fig. 2. The structure shown in panel c has 3-fold symmetry, and has only one possible depiction
(panel d). Its free energy is thus effectively given by 3∆Fb−T∆Sloop(6)+3∆Gassoc +kBT log(3). This latter term is
effectively added by dividing its contribution to the partition function by 3 (the symmetry number). Thus, by dividing
the contribution of each m-mer structure to Z by m we simultaneously correct for the overcounting performed by our
enumeration procedure and account for the entropic penalty of symmetric structures.

1.2.4 An exact calculation of g for multimers

We will describe the exact calculation for g(n,m,Nb) here. For most purposes, the exact calculation of g is overkill:
g(n,m,Nb) is well approximated by g(nm, 1, Nb)/m (or a slight modification thereof when disallowing neighbor
stickers from binding). However, in certain regimes – in particular for very small n or very positive values of F –
this approximation is no longer valid. Moreover, we need to calculate g exactly if we are to make the claim that the
approximation we use is appropriate.
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The issue we address in this section is that of connected multimers. To give an example (neglecting the factor
of 1/m for the moment): ga(2, 2, 2) should be equal to 1; there is one way to make a dimer with two bonds, given
two strands each with two stickers. (Accounting for the symmetry factor, the structure has a two-fold symmetry, so
that ga/m = 1/2). However, ga(4, 1, 2) = 2 is twice as large, since it also considers the structure which has each
sticker bound to its neighbor on the same strand (a structure that is also two-fold symmetric). This second structure
is not a dimer in truth – it is actually two monomers. This problem gets worse with larger m (for very small n). For
example, ga(2, 3, 3) should be equal to 1: there is only one way to make a trimer with three bonds between three
strands of n = 2 (and in fact, this trimer is shown in panels c and d of Supplementary Fig. 2). However, g(6, 1, 3) = 5
since it also considers the structure comprised of 3 monomers, as well as the three permutations of the same structure
comprised of one dimer and one monomer.

Typically, corrections of this sort are negligible, since the vast majority of possible structures are connected. How-
ever, in the regime that very few stickers are typically bound, or that all stickers are bound with a very small value of
n (such as n = 2), this is no longer the case.

An exact calculation of g(n,m,Nb) therefore subtracts out the contribution of disconnected structures. We thus
need to calculate all integer partitions of m, and for each, the number of ways to connect m strands (excluding
connections that appear as pseudoknots when drawing the strands in a line, as those are already not counted). For
example, for m = 4, there is 1 way to connect the strands as 4 monomers, 6 ways to connect them as 2 monomers
and a dimer, 4 ways to connect them as a monomer and a trimer, and 2 ways to connect them as 2 dimers. We then
need to enumerate, for each of these combinations, the different ways of splitting up the Nb bonds among the different
sub-structures.

Thus, in order to calculate the connected multiplicity factor gconn(n, 4, Nb), we calculate:

gconn(n, 4, Nb) = ga/d(n, 4, Nb)−

[
Nb−j−k−l∑

i=0

Nb−k−l∑
j=0

Nb−l∑
k=0

Nb∑
l=0

g(n, 1, i)g(n, 1, j)g(n, 1, k)g(n, 1, l)+

6

Nb−j−k∑
i=0

Nb−k∑
j=0

Nb∑
k=0

g(n, 1, i)g(n, 1, j)gconn(n, 2, k)+

4

Nb−j∑
i=0

Nb∑
j=0

g(n, 1, i)gconn(n, 3, j)+

2

Nb−j∑
i=0

Nb∑
j=0

gconn(n, 2, i)gconn(n, 2, j)

]
.

(S9)

Here, ga/d is the unconnected multiplicity as defined in Supplementary Notes 1.2.1 and 1.2.2 for the cases of allow-
ing and disallowing neighbor binding, respectively (the former case simply yields ga(4n, 1, Nb); the latter is more
complicated as discussed in the referenced section). This unconnected multiplicity is corrected by subtracting the
contribution of 4 monomers that have among them Nb total bonds, the contribution of 2 monomers and 1 dimer, and
so on.

Finally, to get the true multiplicity factor, gconn(n,m,Nb) needs to be divided by m to account for symmetries as
discussed in Supplementary Note 1.2.3.
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Supplementary Note 2 Concentration units and their connection to ∆F

Throughout the text, we have treated concentrations as dimensionless. In other words, the concentrations we use are
normalized by some reference concentration ρ. We have not defined ρ explicitly, because its value does not affect the
physical observables we consider here. As explained in Ref. [1], any reference concentration used also enters into the
definition of ∆Gassoc, as

∆Gassoc = ∆Gpub
assoc −

1

β
log
( ρ

1 mol/Liter

)
(S10)

where ∆Gpub
assoc is the published value for the free energy cost of dimerization. This value is 4.09 kcal/mol for the free

energy cost of RNA-RNA association [3, 4, 5]; 1.96 for the free energy cost of DNA-DNA association [6]; and 3.1 for
the free energy cost of RNA-DNA association [7, 8].

The effect is that factors of ρ cancel out in the relevant equations. Namely,

cm/ρ

(c1/ρ)m
=
Zm

Zm
1

cm
cm1

ρm−1 =
Z ′
me

−β(m−1)∆Gassoc

Z ′m
1

cm
cm1

ρm−1 =
Z ′
me

−β(m−1)∆Gpub
assoc

Zm
1

( ρ

1M

)m−1

(S11)

where Z ′
m ≡ Zme

β(m−1)∆Gassoc is Zm not including the free energy cost of multimerization.
In fact, the natural units with which to measure concentration are c/(eβ∆Gpub

assoc × 1 M), since the above equation
could be further simplified to

cm/e
β∆Gpub

assoc

(c1/eβ∆Gpub
assoc)m

=
Z ′
m

Zm
1

(S12)

where c is now made dimensionless by measuring it in units of M , and the right-hand side is now independent of
Gpub

assoc.
We chose to keep ∆Gassoc explicitly in the equations, in order to emphasize that changes to its value (for example,

by changing ionic conditions) can affect aggregation properties. However, you will notice that both concentrations and
∆Gpub

assoc always appear in the combination c/eβ∆Gpub
assoc . Since we change units early on to ∆F ≡ ∆Gpub

assoc − T∆Sloop,
that combination becomes c/eβ∆F .
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Supplementary Note 3 Calculating the partition function analytically
The partition function is given by

Zm =
∑
Nb

g(n,m,Nb)e
−βFNbe−β(m−1)∆F . (S13)

In principle, we can of course compute this sum. In practice however, such a computation is too computationally in-
tensive for reasonable purposes. We therefore need to approximate the sum. We do so by a saddlepoint approximation,
approximating the sum as being dominated by a particular term. We allow for a maximum of a second order correction
in our approximations in order to balance computational feasibility and accuracy of the model. Indeed, these approxi-
mations appear to be entirely sufficient to describe the system with a high degree of accuracy (see Supplementary Fig.
3.

In this section, we will describe the different regimes of this saddlepoint approximation.

3.1 Allowing neighbor bonds
In this case, for n≫ 1, a good approximation for g is

g(n,m,Nb) =
(nm)!

m (nm− 2Nb)! (Nb + 1)! Nb!
(S14)

(See Supplementary Note 1.2.4 for a description of the calculation for very small values of n). In order to proceed, we
need an estimate of which term in the sum is dominant.

3.1.1 (Almost) all stickers are typically bound

The maximum possible number of stickers bound is

Nmax
b = floor

(nm
2

)
. (S15)

Finding an approximation for g therefore depends on whether nm is even or odd.

Even nm
In this case, Nmax

b = nm/2. We then have

g(n,m,Nmax
b ) =

(nm)!

m
(
nm
2 + 1

) [(
nm
2

)
!
]2 (S16)

where we have written the factorial in a way that will make the final result cleaner. We approximate the factorial with
Stirling’s approximation, x! ≈

√
2πx(x/e)x, yielding

g(n,m,Nmax
b ) ≈ 2nm

(nm+ 2)
√

nπ
8 m

3/2
(S17)

Odd nm
In this case, Nmax

b = (nm− 1)/2. We then have

g(n,m,Nmax
b ) =

nm(nm− 1)!

m
(
nm+1

2

) [(
nm−1

2

)
!
]2 (S18)

where, again, the factorials have been broken up to make the final expression cleaner. Using Stirling’s approximation,
we get

g(n,m,Nmax
b ) ≈ 2nm−1

nm+1
n

√
(nm−1)π

8

(S19)
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We can then repeat this procedure to get the next order correction, meaning the term corresponding to Nmax
b − 1

bonds. All combined, we find that

Zm ≈

e
(log(2)− βF

2 )nm−β(m−1)∆F 1
m

(
1

nm+2

√
8

nmπ +
√

nm
8π e

βF +O
(
e2βF

))
if nm is even

e(log(2)−
βF
2 )(nm−1)−β(m−1)∆F 1

m

(
nm

nm+1

√
8

(nm−1)π + nm
3

√
nm−1
8π eβF +O

(
e2βF

))
otherwise

(S20)
in this regime.

For very negative βF , the first term is dominant. For even values of n, that implies that Zm/Z
m
1 is independent of

F for very negative values. Furthermore, for intermediate values of βF and even n, Zm/Z
m
1 is actually larger than for

very negative βF . This behavior is at the heart of the reentrant transition described in the main text, and can be seen
in the exact computationally-enumerated partition function in Supplementary Fig. 4.

3.1.2 Calculating N⋆
b

For the regime in which some stickers are typically bound (next section) we need to calculate the dominant term of
Zm, corresponding to N⋆

b . This corresponds to the value of Nb such that

∂g(n,m,Nb)e
−βFNb

∂Nb
=

∂

∂Nb

[
(nm)! e−βFNb

m (nm− 2Nb)! (Nb + 1)! Nb!

]
= 0. (S21)

Calculating the derivative and simplifying, we arrive at

1

N⋆
b + 1

+ βF + 2ψ(0)(N⋆
b + 1) = 2ψ(0)(nm− 2N⋆

b + 1) (S22)

where ψ(m)(z) is the polygamma function of order m, defined in terms of the gamma function as

ψ(m)(z) =
dm+1

dzm+1
log Γ(z). (S23)

For large values of z, ψ(0)(z + 1) is approximately given by log(z). This approximation directly applies in the
intermediate binding regime: the argument of the left-hand-side polygamma function is large when not in the weak
binding regime, and the argument of the right-hand-side function is large when not in the strong binding regime.
Assuming the N⋆

b ≫ 1, we also neglect the first term, arriving at

βF + 2 log(N⋆
b ) = 2 log(nm− 2N⋆

b ). (S24)

Solving this equation, we have

N⋆
b =

nm

2 + eβF/2
(S25)

3.1.3 Some stickers are typically bound

As derived above, we find

N⋆
b ≈ nm

2 + eβF/2
. (S26)

When eβF/2 ≪ 1, the previous regime applies, and the discreteness of the number of stickers matters. In the
regime with which we are concerned here, the fact that N⋆

b is not an integer is insignificant, and in fact, as we will see,
the sum can be well approximated as an integral.

This regime applies when each of the factorial terms in (S14) is greater than unity. We therefore approximate the
factorial with Stirling’s approximation, x! ≈

√
2πx(x/e)x, yielding

g(n,m,Nb) ≈
1

2πmNb(Nb + 1)

(
nm

nm− 2Nb

)nm+ 1
2
(
nm− 2Nb

nm

)2Nb

(S27)
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Plugging in N⋆
b for Nb, we have

g(n,m,Nb) ≈
1

2πmN⋆
b (N

⋆
b + 1)

(
1 + 2e−βF/2

)nm+ 1
2
(
eβF/2

)2N⋆
b

(S28)

Thus, the dominant term of Zm, (which we call Z⋆
m) is approximately

Z⋆
m ≈ 1

2πmN⋆
b (N

⋆
b + 1)

(
1 + 2e−βF/2

)nm+ 1
2

e−β(m−1)∆F (S29)

which can be written more tellingly as

Z⋆
m ≈

eβ∆F
(
1 + 2e−βF/2

)1/2
2πmN⋆

b (N
⋆
b + 1)

[(
1 + 2e−βF/2

)n
e−β∆F

]m
(S30)

Written this way, connections between this expression and that found in the previous regime are apparent. In particular,
it is clear why logZ increases linearly with both n and m, and the factor of 2nm makes an appearance here as in the
previous regime. However, understanding the behavior ofZm/Z

m
1 involves understanding the behavior of the prefactor

to the bracketed term.
We also consider the next-order correction to Zm. This is found using the saddlepoint approximation. For an

exponential integrand ef(x) that has a maximum at x⋆ (and therefore f ′(x⋆) = 0), the following becomes a very good
approximation since exponentials are so sharply peaked:∫ ∞

−∞
ef(x)dx ≈

∫ ∞

−∞
ef(x

⋆)+xf ′(x⋆)+ x2

2 f ′′(x⋆)dx = ef(x
⋆)

√
2π

|f ′′(x⋆)|
. (S31)

For our purposes, f(Nb) = log (g(n,m,Nb))− βFNb − β(m− 1)∆F . What we have done so far – finding Z⋆
m

– is equivalent in this language to finding ef(x
⋆). Since |f ′′(N⋆

b )| is generally quite small (O(1) as a general rule, < 6
in all cases we examined), the error introduced by the approximation of the sum as an integral is negligible. In this
case, the curvature term f ′′(x⋆) leads to

Zm ≈ Z⋆
m

√√√√ 2π

4ψ(1)(n− 2N⋆
b + 1) + 2ψ(1)(N⋆

b + 1)− 1

(N⋆
b +1)

2

. (S32)

We compare this analytical formula to the computational results for intermediate binding (Fb = −6 kcal/mol) in
Supplementary Fig. 5. Here we use the parameter leff fit to data from Fig. 2 along with (10).

3.1.4 Very few stickers are typically bound

This is the regime in which the typical number of stickers in a multimer of size m is equal to or only slightly larger
than m − 1. This is the most computationally difficult regime to explore, since in this regime, g(n,m,Nb) is not
well approximated by g(nm, 1, Nb)/m. Instead, we need to employ the exact calculation of g(n,m,Nb) described
in Supplementary Note 1.2.4. We consider only the first three terms of the sum in this regime, enumerating the
contribution of Nb = m − 1 up to m − 3. We do not consider this regime further analytically, but do employ it in
comparison to the computational predictions (e.g. Fig. 2B).

3.2 Disallowing neighbor bonds
In this case, a good approximation for g(n,m,Nb) is given by

g(n,m,Nb) ≈
(q −Nb)! (q −Nb − 1)!

m (q − 2Nb)! (q − 2Nb − 1)! (Nb + 1)! Nb!
(S33)

where q = nm+ α(m− 1), with α ≈ 0.42.
We will follow a similar procedure in this section as that taken in the previous section, but the calculations are

slightly more cumbersome here because of the increased complexity of g.
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3.2.1 (Almost) all stickers are typically bound

In this regime, we find that we get a good approximation for Z by considering the monomer case, and substituting in
q for n after simplifying.

With neighbor bonds disallowed, the maximum possible number of stickers bound for monomers is

Nmax
b = floor

(
n− 1

2

)
. (S34)

Finding an approximation for g therefore again depends on whether n is even or odd. The procedure here is analogous
– with slightly more involved calculations – to the procedure for calculating Z allowing for neighbor binding.

Odd n
The final term in the sum for Z1 for odd n is given by Nb = n−1

2 . After simplifying the expression for g in
this case, we find that there is only one possible way to arrange this number of bonds in a monomer. The next term
corresponds to a value of Nb given by n−3

2 . Combined, we find that in this regime,

Z1 = e−
βF
2 (n−1)

(
1 +

(n+ 3)(n+ 1)2(n− 1)

192
eβF

)
. (S35)

Even n
The final term in the sum for Z1 for even n is given by Nb =

n
2 − 1. Simplifying the factorials and including the

second-to-last term as well, we find that for even n in this regime,

Z1 = e−
βF
2 (n−2)

(
n(n+ 2)

8

)(
1 +

(n+ 4)(n+ 2)n(n− 2)

1152
eβF

)
. (S36)

To convert from Z1 to Zm, we first multiply by e−β(m−1)∆F

m . Second, we (heuristically) replace each instance of n
in these expressions by q. Finally, for even values of nm with m > 1, multimers are described by this equation with
the exception that they are able to form one further bond (such that all stickers are bonded). We can account for this
by adding a term

e−β(m−1)∆F

m
e−

βF
2 q (S37)

to the partition function for even nm. This term is primarily useful for m = 2, for which the multiplicity factor of
one is accurate (for m = 2, there is indeed only one way to fulfill all bonds, when disallowing neighbor binding).
For m > 2, the replacement of n by q partially accounts for the lack of a further multiplicity factor; furthermore, we
ultimately find that multimers for m > 2 are fairly well approximated by the intermediate regime – considered in the
following sections – for the free energies we consider. Put together, we have

Zm>1 ≈


e−β(m−1)∆F

m e−
βF
2 (q−1)

(
1 + (q+3)(q+1)2(q−1)

192 eβF
)

if nm is odd
e−β(m−1)∆F

m

[
e−

βF
2 (q−1)

(
1 + (q+3)(q+1)2(q−1)

192 eβF
)
+ e−

βF
2 q
]

if n is odd, m is even
e−β(m−1)∆F

m

[
e−

βF
2 (q−2)

(
q(q+2)

8

)(
1 + (q+4)(q+2)q(q−2)

1152 eβF
)
+ e−

βF
2 q
]

if n is even.
(S38)

where q = nm+ α(m− 1), with α ≈ 0.42.

3.2.2 Calculating N⋆
b

For the regime in which some stickers are typically bound (next section) we need to calculate the dominant term of
Zm, corresponding to N⋆

b . This corresponds to the value of Nb such that

∂g(n,m,Nb)e
−βFNb

∂Nb
=

∂

∂Nb

[
((q −Nb)!)

2
(q − 2Nb) e

−βFNb

m (q −Nb) ((q − 2Nb)!)
2
(Nb + 1) (Nb!)

2

]
= 0. (S39)

Calculating the derivative and simplifying, we arrive at
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2

q − 2N⋆
b

+
1

N⋆
b + 1

− 1

q −N⋆
b

+ βF − 4ψ(0)(q − 2N⋆
b + 1) + 2ψ(0)(q −N⋆

b + 1) + 2ψ(0)(N⋆
b + 1) = 0. (S40)

Recognizing that in the intermediate regime, q − 2N⋆
b > 1, N⋆

b + 1 > 1, and q − N⋆
b > 1, we can make

the approximation of neglecting the first three terms. We then make the same approximation as previously, treating
ψ(0)(z+1) ≈ log(z). Solving the resulting equation and recognizing that N⋆

b <
q
2 to remove the extraneous solution,

we arrive at

N⋆
b ≈ q

2

(
1− eβF/4

√
4 + eβF/2

)
. (S41)

3.2.3 Some stickers are typically bound

As derived above, we find that for monomers

N⋆
b ≈ n

2

(
1− eβF/4

√
4 + eβF/2

)
. (S42)

where, as previously, we substitute q for n when considering multimers.
The dominant term of Z for monomers corresponds to

g ≈ (n− 2N⋆
b ) [(n−N⋆

b )!]
2

(n−N⋆
b )(N

⋆
b + 1) [(n− 2N⋆

b )!]
2
[(N⋆

b )!]
2 . (S43)

Using Stirling’s approximation, this expression becomes

g ≈ 1

2πmN⋆
b (N

⋆
b + 1)

(
n−N⋆

b

n− 2N⋆
b

)2(n−N⋆
b )
(
n

N⋆
b

− 2

)2N⋆
b

. (S44)

As previously, we consider not only the dominant term of Z but also the curvature term of the saddlepoint approx-
imation. This term can be most clearly written in terms of the following function

h(x) = x−2 − 2ψ(1)(x) (S45)

as √
2π

−4h(n− 2N⋆
b ) + h(n−N⋆

b )− h(N⋆
b + 1)

. (S46)

Putting this all together, in this regime, we approximate Zm as

Zm ≈ Z⋆
m

√
2π

−4h(q − 2N⋆
b ) + h(q −N⋆

b )− h(N⋆
b + 1)

(S47)

where

Z⋆
m =

e−β(FN⋆
b +(m−1)∆F )

2πmN⋆
b (N

⋆
b + 1)

(
q −N⋆

b

q − 2N⋆
b

)2(q−N⋆
b )
(
q

N⋆
b

− 2

)2N⋆
b

N⋆
b =

q

2

(
1− eβF/4

√
4 + eβF/2

)
.

(S48)
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Supplementary Figure 3: Accuracy of saddlepoint approximation. The full sum calculating Z1 (with the Stirling
approximation made for the factorials) is plotted alongside four versions of the saddlepoint approximation: the first-
order (green and yellow, dashed) and second-order-corrected (pink and magenta, dotted) approximations in both the
strong and intermediate regimes. Panel A shows the full partition function; panel B shows the ratio of the estimated
partition function to the full sum. A dashed vertical line plots the expected crossover point between the strong and
intermediate regimes. Indeed, the strong approximation (last term) and intermediate approximation (N⋆

b term) pro-
vide good agreement with the full sum in their respective regimes, with the second-order-corrected approximations
improving the accuracy.
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Supplementary Figure 4: Partition functions as a function of Fb. Z4/Z
4
1 is plotted as a function of Fb using the

exact computationally-enumerated partition functions. The surprising behavior predicted by the analytical model and
discussed in the main text can be seen clearly, namely that at the interface between the strong and intermediate binding
regimes for even n, the partition function ratio is larger than it is in the very strong binding regime. This behavior is
seen regardless of the value of m chosen (here, m = 4).

Supplementary Figure 5: Partition functions in the intermediate regime. Zm and Zm/Z
m
1 are plotted as in Fig. 2

with Fb = −6 kcal/mol. A single parameter for each column is fit to the results in Fig. 2 as described in the discussion
of that figure, and extrapolated to Fb = −6 kcal/mol using (10). As predicted, there is no even/odd discrepancy for n
in this intermediate regime of binding.
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Supplementary Note 4 Predicting the aggregation threshold
Once we have the partition functions, we can then compute the equilibrium concentration of each multimer. These are
found by solving the following set of equations:

cm =
Zm

Zm
1

cm1∑
m

mcm = ctot
(S49)

where the concentrations are made dimensionless by normalizing by a reference concentration (see Supplementary
Note 2) and ctot is the total concentration of strands added to solution.

Aggregation is predicted when cm grows with m. However, these equations have cm dependent on c1. If m has a
finite maximum value mmax, we can simply solve the mmax equations for c1, plug that in, and observe the dependence
on m of cm. Indeed, this is how we make predictions of cm in our computational model. There is also some finite
value to mmax in an experiment given by the total number of molecules in the solution. However, that number is far
too large to treat via this approach, and is reasonably treated as infinite. How can we find the aggregation threshold
allowing for arbitrarily large clusters?

In this section, we will demonstrate how this question can be addressed. We will first consider the case allowing
neighbor binding, and then the case disallowing neighbor binding. For each, the simplest case to consider is that in
which monomers have some of their stickers typically bound (i.e. the intermediate regime considered above), and that
is where we will begin.

Throughout this section, we will consider only the dominant term of the sum for Zm, without any higher-order
corrections. Some accuracy is therefore compromised for the sake of computational feasibility, but errors are expected
to be minor.

4.1 General framework
We start with a simple example to demonstrate the framework of the calculation. Consider a partition function

Zm = κm−λγm. (S50)

Partition functions for this system are often approximately in this form. The concentration of m-mers cm is given in
terms of c1 by

cm = Zm

(
c1
Z1

)m

= κm−λ
(c1
κ

)m
. (S51)

The total concentration is given by

ctot =
∑
m

mcm = κ
∑
m

m−λ+1
(c1
κ

)m
. (S52)

We now recognize that the right-hand-side has a maximum possible value it can reach for c1 ≤ κ, given by
κζ(λ− 1) where ζ is the Riemann zeta function:

ζ(s) =

∞∑
n=1

1

ns
. (S53)

if ctot > κζ(λ− 1), no value of c1 ≤ κ will satisfy (S52). In that case, c1/κ must be > 1, and thus cm increases with
m for large enough m. The aggregation threshold is thus defined by

ctot
thresh = κζ(λ− 1). (S54)

For concentrations greater than ctot
thresh, the system is expected to form aggregates; for smaller concentrations, cm

exponentially decreases with m.
To be clear, for ctot > ctot

thresh (i.e. c1 > κ) the sum in (S52) will actually diverge, an outcome that is both unphysical
and unreasonable mathematically given that the left hand side is finite. The solution is that we are neglecting here
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any excluded volume interactions which will contribute a term e−vm2

in the summand and ensure the sum does not
actually diverge, and physically mean that we will still expect to form finite-sized clusters in the aggregation regime.
However, since we expect v to be small, the integrand will still increase with m within a certain regime for c1/κ > p,
where p is only fractionally larger than unity. We will continue to neglect these effects here, since they are not, for our
purposes, instructive.

4.2 Allowing neighbor bonds

4.2.1 Monomers have some stickers typically bound

The number of stickers typically bound is approximately

Ns(m) ≈ 2nm

2 + eβF/2
(S55)

Here we are treating values of n and βF such that n − 2 > Ns(1) > 6 (or so) such that the intermediate regime
approximation applies for monomers.

A question arises: if monomers are in the intermediate regime, how about multimers of size m? Because Ns(m)
scales linearly with m, a constant fraction of sites are expected to be bound, regardless of m. Therefore, the interme-
diate regime will always apply for multimers, if it applies for monomers.

We found previously that the partition function in this regime is approximately given by

Zm =
eβ∆F

(
1 + 2e−βF/2

)1/2
2πmN⋆

b (N
⋆
b + 1)

[(
1 + 2e−βF/2

)n
e−β∆F

]m
. (S56)

The bracketed term cancels exactly in the equation for Zm/Z
m
1 , yielding

Zm

Zm
1

=
1

m2

[
eβ∆F

(
1 + 2e−βF/2

)1/2 (
2 + eβF/2

)2
2πn

(
n+ 2 + eβF/2

) ]1−m

n+ 2 + eβF/2

nm+ 2 + eβF/2
. (S57)

We can then combine equations (S49) with this to get

ctot =
eβ∆F

(
1 + 2e−βF/2

)1/2 (
2 + eβF/2

)2
2πn

∞∑
m=1

1

m
(
nm+ 2 + eβF/2

) [x(c1)]m (S58)

where we have defined x(c1) to be

x(c1) =
2πn

(
n+ 2 + eβF/2

)
c1

eβ∆F
(
1 + 2e−βF/2

)1/2 (
2 + eβF/2

)2 (S59)

We will discuss in the next section a way to use this equation as is, but for now, in order to proceed will will make
the assumption that nm≫ 2+ eβF/2. This is equivalent to the assumption that N⋆

b ≫ 1, which is entirely reasonable
in this regime. This allows us to write

ctot =
∑
m

m cm ≈
eβ∆F

(
1 + 2e−βF/2

)1/2 (
2 + eβF/2

)2
2πn2

∞∑
m=1

[x(c1)]
m

m2
(S60)

Since the prefactor to the sum is independent of m, the statement that cm increases with m (our definition of
aggregation) is equivalent to the statement that x(c1) > 1. Once x(c1) > 1, then for large enough m, the summand
will be increasing with m.

We have now refined our problem of finding the aggregation threshold as finding the set of parameters for which
x(c1) > 1. However, we still don’t have an estimate for c1! How then can we find for what set of parameters
x(c1) > 1?

Let us rewrite (S60) in a more suggestive form:

2πn2ctot

eβ∆F
(
1 + 2e−βF/2

)1/2 (
2 + eβF/2

)2 =

∞∑
m=1

[x(c1)]
m

m2
(S61)
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The key comes from recognizing that for x(c1) ≤ 1, the right hand side has a maximum value it can reach, given by
the Riemann zeta function ζ(2) = π2/6. If the left hand side is greater than that value, x(c1) must be > 1. (And
again – the reason the sum nonetheless evaluates to a finite value is because of the excluded volume interactions we
are omitting here). Since the left hand side is comprised only of terms we control directly – ctot, n, βF , and β∆F –
we have found our condition for aggregation in this regime:

n2ctot

eβ∆F
(
1 + 2e−βF/2

)1/2 (
2 + eβF/2

)2 > π

12
. (S62)

4.2.2 Monomers have (almost) all stickers typically bound

If 2n
2+eβF/2 ≳ n−2, monomers typically have all or almost all their stickers bound. In that case, Z1 is best approximated

by that regime. However, for large enough m, Zm will be best approximated by the intermediate regime. This is
because an approximately constant fraction of the stickers is typically bound, and for larger m, that fraction will
correspond to a greater number of unbound stickers. We define m⋆ + 1 to be the smallest value of m for which the
intermediate regime applies.

Even n
For even n, we found previously that Z1 is approximately given by

Z1 = e(log(2)−
βF
2 )n

(
1

n+ 2

√
8

nπ

)
. (S63)

Since when n is even, nm is also always even, we have

Zm≤m⋆ = e(log(2)−
βF
2 )nm−β(m−1)∆F 1

m

(
1

nm+ 2

√
8

nmπ

)
. (S64)

This gives a ratio

Zm≤m⋆

Zm
1

= m−3/2 n+ 2

nm+ 2

[
e−β∆F (n+ 2)

√
nπ

8

]m−1

(S65)

For m > m⋆, we have

Zm>m⋆ =
eβ∆F

(
1 + 2e−βF/2

)1/2
2πm

(
nm

2+eβF/2

)(
nm

2+eβF/2 + 1
) [(1 + 2e−βF/2

)n
e−β∆F

]m
(S66)

yielding the ratio

Zm>m⋆

Zm
1

=
eβ∆F

(
1 + 2e−βF/2

)1/2
2πm

(
nm

2+eβF/2

)(
nm

2+eβF/2 + 1
) [e−β∆F

(
1 +

eβF/2

2

)n

(n+ 2)

√
nπ

8

]m
. (S67)

We follow the same protocol as in the previous section, but our sum is now broken up into two parts:

ctot =

m⋆∑
m=1

m
Zm≤m⋆

Zm
1

cm1 +

∞∑
m=m⋆+1

m
Zm>m⋆

Zm
1

cm1

= eβ∆F

√
8

nπ

m⋆∑
m=1

1

(nm+ 2)
√
m

[y(c1)]
m
+

eβ∆F
(
1 + 2e−βF/2

)1/2 (
2 + eβF/2

)
2πn

∞∑
m=m⋆+1

1

m
(

nm
2+eβF/2 + 1

) [y(c1)(1 + eβF/2

2

)n
]m

(S68)
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where we have defined

y(c1) = e−β∆F (n+ 2)

√
nπ

8
c1 (S69)

If we make the approximation that n ≫ 2 (for the first sum) and nm⋆

2+eβF/2 ≫ 1 (for the second), the equations
become a bit cleaner. Note that we could also not make such an approximation, and instead further split each sum
in two; the first new sum (for smaller values of m) would then remain unapproximated and need to be computed
explicitly, and the second (for larger values) will be approximated with the aforementioned approximations. For
clarity and simplicity, we do not split the sums up further here. We thus arrive at the slighly simpler equation

ctot = eβ∆F

√
8

n3π

m⋆∑
m=1

m−3/2 [y(c1)]
m
+

eβ∆F
(
1 + 2e−βF/2

)1/2 (
2 + eβF/2

)2
2πn2

∞∑
m=m⋆+1

m−2

[
y(c1)

(
1 +

eβF/2

2

)n
]m

. (S70)

The first sum will always be finite; aggregation is predicted when y(c1) >
(
1 + eβF/2

2

)−n

(and therefore the
second sum diverges). This inequality is substituted by an equality at the aggregation threshold itself, thus defining
the value of c1 at the threshold. By plugging in this value into the first sum, we find that the aggregation is predicted
when ctot > ctot

thresh, defined by

ctot
thresh = eβ∆F

√
8

n3π

m⋆∑
m=1

m−3/2

[(
1 +

eβF/2

2

)−n
]m

+

eβ∆F
(
1 + 2e−βF/2

)1/2 (
2 + eβF/2

)2
2πn2

∞∑
m=m⋆+1

m−2. (S71)

The result of the second sum is given by ψ(1)(m⋆+1) where ψ is the polygamma function defined previously. The
result of the first sum can either be written in terms of the Lerch transcendent Φ and polylogarithm function Li3/2,
or simply evaluated directly. The latter approach needs no further explanation, and for many purposes is the most
straightforward approach to take. To demonstrate the former approach, we define the two functions here:

Φ(z, s, α) =
∞∑
k=0

zk

(k + α)s

Lis(z) =Φ(z, s, 0) =

∞∑
k=0

zk

ks

(S72)

and use them to write

m⋆∑
m=1

m−3/2

[(
1 +

eβF/2

2

)−n
]m

= Li3/2

((
1 +

eβF/2

2

)−n
)
−

(
1 +

eβF/2

2

)−n(1+m⋆)

Φ

((
1 +

eβF/2

2

)−n

,
3

2
,m⋆ + 1

)
. (S73)

The benefit of writing the sum in this way is that these two functions have been deeply categorized and explored
mathematically (and that therefore, functions in Python, Mathematica, and similar programs can be used to evaluate
them very efficiently). Putting it together, we find that we predict aggregation in this regime when
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ctot

eβ∆F
>

(
1 + 2e−βF/2

)1/2 (
2 + eβF/2

)2
2πn2

ψ(1)(m⋆ + 1)+√
8

n3π

[
Li3/2

((
1 +

eβF/2

2

)−n
)
−

(
1 +

eβF/2

2

)−n(1+m⋆)

Φ

((
1 +

eβF/2

2

)−n

,
3

2
,m⋆ + 1

)]
. (S74)

A reasonable estimate of m⋆ is the value of m for which Ns(m
⋆) = nm⋆ − 2, yielding

m⋆ =
2 + 4e−βF/2

n
. (S75)

Plugging this result back into the previous equation we find a prediction for the concentration threshold that depends
only on the values of n, βF , and β∆F .

Odd n
We follow the same procedure for odd values of n. However, now, m < m⋆, the value of Zm depends on whether
m is even or odd. We therefore now have three cases. Besides Zm≤m⋆, even and Zm>m⋆ which are equivalent to the
corresponding expressions for the even n case, we have

Z1 = e(log(2)−
βF
2 )(n−1)

(
n

n+ 1

√
8

(n− 1)π

)

Zm≤m⋆, odd = e(log(2)−
βF
2 )(nm−1)−β(m−1)∆F 1

m

(
nm

nm+ 1

√
8

(nm− 1)π

)
.

(S76)

The three cases are

Zm≤m⋆, odd

Zm
1

=

[
2e−

βF
2 −β∆F

(
n+ 1

n

)(
(n− 1)π

8

)1/2
]m

n

nm+ 1

(
8

(nm− 1)π

)1/2
e

βF
2 +β∆F

2

Zm≤m⋆, even

Zm
1

=

[
2e−

βF
2 −β∆F

(
n+ 1

n

)(
(n− 1)π

8

)1/2
]m

1

m(nm+ 2)

(
8

nmπ

)1/2

eβ∆F

Zm>m⋆

Zm
1

=

[(
1 +

eβF/2

2

)n

2e−
βF
2 −β∆F

(
n+ 1

n

)(
(n− 1)π

8

)1/2
]m

eβ∆F
(
1 + 2e−βF/2

)1/2
2πm

(
nm

2+eβF/2

)(
nm

2+eβF/2 + 1
)

(S77)
In keeping with the previous procedure, we define z(c1) to be

z(c1) = 2e−
βF
2 −β∆F

(
n+ 1

n

)(
(n− 1)π

8

)1/2

c1. (S78)

The total concentration is then given by
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ctot =

m⋆∑
m=1,3,5...

nm

nm+ 1

(
8

(nm− 1)π

)1/2
e

βF
2 +β∆F

2
[z(c1)]

m
+

m⋆∑
m=2,4,6...

1

nm+ 2

(
8

nmπ

)1/2

eβ∆F [z(c1)]
m
+

∞∑
m=m⋆+1

eβ∆F
(
1 + 2e−βF/2

)1/2
2π
(

nm
2+eβF/2

)(
nm

2+eβF/2 + 1
) [(1 + eβF/2

2

)n

z(c1)

]m
. (S79)

As previously, aggregation is predicted when the final sum diverges, or when z(c1) >
(
1 + eβF/2

2

)−n

. In order to

simplify the mathematics, we make the approximation that n≫ 2. This allows us to write each summand as m−λγm

for some values of λ and γ:

ctot =
e

βF
2 +β∆F

2

√
8

nπ

m⋆∑
m=1,3,5...

m−1/2 [z(c1)]
m
+

√
8

n3π
eβ∆F

m⋆∑
m=2,4,6...

m−3/2 [z(c1)]
m
+

eβ∆F
(
1 + 2e−βF/2

)1/2
2π
(

n
2+eβF/2

)2 ∞∑
m=m⋆+1

m−2

[(
1 +

eβF/2

2

)n

z(c1)

]m
. (S80)

To address the first sum, we let mo = (m+ 1)/2, such that

m⋆∑
m=1,3,5...

m−1/2 [z]
m

=
1

z
√
2

m⋆+1
2∑

mo=1

(
mo −

1

2

)−1/2 [
z2
]mo

=
z√
2

[
Φ

(
z2,

1

2
,
1

2

)
− zm

⋆+1Φ

(
z2,

1

2
,
m⋆

2
+ 1

)] (S81)

(where we have written z(c1) as z for notational convenience and clarity). For notational clarity, we will denote this
combination by so(z,m⋆). We make a similar substitution for the second sum (which we will denote by se(z,m⋆)),
letting me = m/2:

m⋆∑
m=2,4,6...

m−3/2 [z]
m

= 2−3/2

m⋆

2∑
me=1

m−3/2
e

(
z2
)me

= 2−3/2

[
Li3/2(z

2)− zm
⋆+2Φ

(
z2,

3

2
,
m⋆

2
+ 1

)]
.

(S82)

The aggregation threshold occurs when z(c1) =
(
1 + eβF/2

2

)−n

, meaning that

ctot
thresh

eβ∆F
= e

βF
2

√
2

nπ
so

((
1 +

eβF/2

2

)−n

,m⋆

)
+√

8

n3π
se

((
1 +

eβF/2

2

)−n

,m⋆

)
+

(
1 + 2e−βF/2

)1/2
2π
(

n
2+eβF/2

)2 ψ(1)(m⋆ + 1). (S83)

Given our previous estimate of m⋆ = 2+4e−βF/2

n , this expression only depends on the parameters n, βF , and
β∆F , and is therefore our final expression for the aggregation threshold in this regime.
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4.3 Disallowing neighbor bonds
The procedure here follows that outlined in the previous section, with the relevant partition functions substituted for
one another. Because the procedure is so similar, we will move faster through these calculations.

As we saw, the partition function for multimers in the intermediate regime appears in all of the calculations. If we
define a function f(βF ) such that

f(βF ) = 1− eβF/4

√
4 + eβF/2

(S84)

then the dominant term in that partition function is that corresponding to N⋆
b = qf(βF )/2. Recognizing that in the

intermediate binding regime, N⋆
b ≫ 1, the equation for Zm in this regime (considering only the dominant term) is

Zm =
2

π
[qf(βF )]

−2 e
−β(m−1)∆F

m

[2e−βF/2

(
1− f(βF )

1− f(βF )
2

)(
1

f(βF )
− 1

)]f(βF ) [
1− f(βF )

2

1− f(βF )

]2q

. (S85)

For clarity, we denote by F(βF ) the expression raised to the power of q, such that the expression above can be written
a bit more cleanly:

Zm =
2

π
[qf(βF )]

−2 e
−β(m−1)∆F

m
[F(βF )]

q
. (S86)

4.3.1 Monomers have some stickers typically bound

In this regime, we have

Zm

Zm
1

=
n2

mq2

[π
2
(f(βF ))

2
n2e−β∆F (F(βF ))

α
]m−1

. (S87)

where q = nm + α(m − 1). If we approximate the q in the denominator as m(n + α) (assuming that nm ≫ α, a
reasonable assumption given that α < 1), the prefactor becomes

1

m3

n2

(n+ α)2
. (S88)

Defining

x(c1) =
π

2
(f(βF ))

2
n2e−β∆F (F(βF ))

α
c1 (S89)

we have

ctot (n+ α)2

n2
x(1) =

∞∑
m=1

1

m2
[x(c1)]

m
. (S90)

We therefore predict that aggregation occurs when

(f(βF ))
2
(F(βF ))

α
(n+ α)2

ctot

eβ∆F
>
π

3
. (S91)

4.3.2 Monomers have (almost) all stickers typically bound

In the corresponding section in which we allowed neighbor bonds, we split up the respective sums into those for
m ≤ m⋆ and m > m⋆, with m⋆ defined as the value of m for which the multimer partition function begins to be
better approximated by the intermediate regime than by the regime in which all stickers are typically bound. We
could certainly do the same split here; however, we find that typical values of m⋆ are so small (typically 3), and
the intermediate regime such a good approximation, as to make it reasonable to forgo this split. We instead simply
consider all multimers withm > 2 as being well-approximated by the intermediate regime. Nevertheless, if a different
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split is needed, it follows along the same lines as when allowing neighbor bonds (with the exception that even and odd
m should to be considered separately for all n and not only for odd n).

Even n
For even n, the dominant term in the monomer partition function is

Z1 =
n(n+ 2)

8
e−

βF
2 (n−2) (S92)

Thus, for large m,

Zm>m⋆

Zm
1

=
2

π

(
1

nm+ α(m− 1)

)2

(f(βF ))
−2 e

β∆F

m
(F(βF ))

−α

(
(F(βF ))

n+α
e−β∆F 8

n(n+ 2)
e

βF
2 (n−2)
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.

(S93)
For small m,

Zm≤m⋆

Zm
1

= eβF
α
2
eβ∆F

m

[
e−βF (1+α/2)

(
8
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)
e−β∆F

]m
. (S94)

Approximating m⋆(n+ α) ≫ α (i.e. n≫ α/m⋆), the total concentration is

ctot =

m⋆∑
m=1

m
Zm≤m⋆

Zm
1
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m
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1
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m
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(S95)

where we have defined

y(c1) = (F(βF ))
n+α

e−β∆F 8

n(n+ 2)
e

βF
2 (n−2)c1. (S96)

The aggregation transition is defined by y(c1) = 1, or c1 = 1/y(1). Thus, aggregation is predicted when

ctot > eβF
α
2 eβ∆F

m⋆∑
m=1

[(
F(βF )e

βF
2

)−(n+α)
]m

+
2 (F(βF ))

−α
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The first sum can also be calculated directly, yielding

ctot > eβF
α
2 eβ∆F
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βF
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(S98)
A reasonable estimate of m⋆ is the value of m for which Ns(m

⋆) = nm⋆ − 2, yielding

m⋆ =
2

n(1− f(βF ))
=

2
√
4 + eβF/2

neβF/4
. (S99)

Plugging this result back into the previous equation we find a prediction for the concentration threshold that depends
only on the values of n, βF , and β∆F .

As discussed, for the free energies we consider, we typically find m⋆ = 2. We will now redo the calculation for
that particular value. If we set m⋆ = 2, we can separate out the m = 1 and m = 2 terms from the sum. We then have
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ctot − c1 − 2
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where

2
Z2

Z2
1

=

(
8

n(n+ 2)

)2

e−β∆F−βF (2+α/2)
(
1 +O(eβF )

)
(S101)

and we have defined the same y(c1) as for the general m⋆ case.

y(c1) = (F(βF ))
n+α

e−β∆F 8

n(n+ 2)
e

βF
2 (n−2)c1. (S102)

Approximating 3(n+ α) ≫ α (i.e. n≫ α/3), the (n+ α)2 term can be taken out of the sum.
Since the aggregation transition is defined by y(c1) = 1, or c1 = 1/y(1), aggregation is predicted when

[(n+ α)f(βF )]
2

[
(F(βF ))
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. (S103)

Odd n
For odd n, the dominant term in the monomer partition function is

Z1 = e−
βF
2 (n−1). (S104)

The approach follows the same procedure as for even n. Instead of y(c1) though, we have

z(c1) = (F(βF ))
n+α

e−β∆F e
βF
2 (n−1)c1. (S105)

We also have three cases to consider:
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The total concentration is

ctot = eβ∆F e
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2 (1+α)

m⋆∑
m=1,3,5...

[
(F(βF ))

−(n+α)
e−

βF
2 (n+α)z(c1)

]m
+

eβ∆F e
βF
2 α

m⋆∑
m=2,4,6...

[
(F(βF ))

−(n+α)
e−

βF
2 (n+α)z(c1)

]m
+

2

π
(f(βF ))

−2
eβ∆F (F(βF ))

−α
(n+ α)−2

∞∑
m=m⋆+1

1

m2
z(c1)

m. (S107)

23



Aggregation is predicted when z(c1) > 1, or

ctot > eβ∆F e
βF
2 α

w
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1 + eβF/2 − w
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where

w =
(
F(βF )e

βF
2

)−(n+α)

. (S109)

Setting m⋆ to (S99), this result depends only on the values of n, βF , and β∆F .
With this result in hand, we can also do the calculation setting m⋆ = 2. For odd n, the dimer term yields

2
Z2

Z2
1

= e−β∆F−βF (1+α/2)
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1 +O(eβF )

)
. (S110)

With the substitution of z for y, the equation for ctot is the same as for even n:
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Z2

Z2
1

c21 =
2

π
(f(βF ))

−2
eβ∆F (F(βF ))

−α
(n+ α)−2

∞∑
m=3

1

m2
[z(c1)]

m (S111)

The aggregation threshold is in this case defined by c1 = 1/z(1), such that aggregation is predicted when

[(n+ α)f(βF )]
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(S112)

4.3.3 Monomers have almost no stickers bound

Because of the computational difficulty of computing partition functions in this regime, and the lack of a simple
analytical formula for g, we do not consider it here. We believe this regime – in which monomers have almost no
stickers bound, but the multiplicity of possible binding combinations drives binding for multimers – to be an interesting
potential area for future research.
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Supplementary Figure 6: Configurational entropy drives aggregation. The ratio of the configurational entropy
of an m-mer to the configurational entropy of m monomers with the same total number of stickers bound, Nb, is
shown as a function of Nb normalized by the maximum value it can take, Nmax

b = nm/2. This ratio is defined as
g(n,m,Nb)/g(n, 1, Nb/m)m. This ratio can serve as a proxy for the propensity of the system to aggregate based
on configurational entropy considerations alone. The typical number of bonds satisfied in the system, or where on
the x-axis the system will typically lie, is determined by the sticker strength −βF . The configurational entropy ratio
is maximized when sticker strength is large enough such that most, but not all, stickers are bound. For the case of
disallowing neighbor binding, aggregation is most likely when nearly all stickers are bound. That the maximum of the
ratio plotted does not occur at the maximum value of Nb leads to the reentrant phase transition explored in this work.
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Supplementary Figure 7: Repeat RNA pseudoknots. We consider the landscape of structures formed by RNA
molecules consisting of n CAG repeats for values of n ≤ 15 (monomers; dashed) or n ≤ 7 (dimers; solid lines).
We either disallow (orange) or allow (blue) both intra- and inter-molecular pseudoknots. a: The minimum free
energy (MFE) structure for monomers is pseudoknotted. The energy gap between the pseudoknotted and the non-
pseudoknotted MFE structure is between ∼ 1.25− 1.5 kcal/mol for even values of n (and smaller for odd n) but does
not appear to grow with n. The dimeric MFE structure is always non-pseudoknotted. b: The number of structures
enumerated grows significantly when allowing pseudoknots. For n = 7 dimers, ∼ 14, 000 non-pseudoknotted struc-
tures are enumerated compared to > 1.1 million pseudoknotted structures. c: The partition function is affected by
the inclusion or exclusion of pseudoknotted structures, but this effect does not appear particularly significant for our
purposes (see Supplementary Fig. 8).

Supplementary Note 5 Computational enumeration

5.1 Complete enumeration is used to probe the contribution of pseudoknots to Z

How much do pseudoknots affect the landscape of structures? To answer this question, we used LandscapeFold [9] to
enumerate all monomeric and dimeric structures that can form with n CAG repeats (n ≤ 15 for monomeric structures;
n ≤ 7 for dimeric structures). The results are shown in Supplementary Fig. 7.

In panel A we show that the minimum free energy (MFE) structure is a pseudoknot for monomeric structures for
n ≥ 4. However, for odd n, its free energy is almost equal to the non-pseudoknotted MFE structure. Moreover, the
energy gap between MFE pseudoknotted and non-pseudoknotted structures appears constant as a function of n (aside
from the even/odd discrepancy). For dimers, the MFE structure is always non-pseudoknotted.

More significant is the effect of including pseudoknots on the landscape as a whole. In panel B we show that
the number of pseudoknotted structures vastly outweighs the number of non-pseudoknotted for large n, especially for
dimers. This multiplicity affects the partition function calculation (panel C). While all four partition functions here
grow roughly exponentially with the number of repeats, the slope of the exponentials is higher when accounting for
pseudoknots.

To quantify the effect of disallowing pseudoknots on our model results, we consider the predicted yields of the
dimers while allowing and disallowing pseudoknots. We refer to the ratio Z2/Z

2
1 as r here. We define the relative error

in r due to disallowing pseudoknots as (log(rn)− log(rp))/ log(rp) where rn describes the results of the calculation
disallowing pseudoknots, and rp the results allowing pseudoknots. Supplementary Fig. 8 shows how the relative error
changes as a function of the number of repeats n in the RNA. We find that the error is mostly within ∼ 10% (aside
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Supplementary Figure 8: The relative error due to disallowing pseudoknots. We consider the landscapes of struc-
tures formed by RNA molecules consisting of n CAG repeats. As in Supplementary Fig. 7, we consider two land-
scapes: one in which we disallow pseudoknots; the other which includes them in the enumeration. We quantify the
relative error of the ratio Z2/Z

2
1 due to disallowing pseudoknots as described in the main text, and show the results as

a function of n. We find that the relative error lies mostly within 10% and does not appear to grow with n. In fact, the
relative error due to disallowing pseudoknots for the longest RNA we considered here, n = 7, is < 1%. We therefore
do not consider pseudoknotted structures further in our model.

from n = 4 which has a ∼ 25% error). Especially, we find that the error does not appear to grow with longer repeat
lengths: the error for the longest RNA we considered with pseudoknots, n = 7, is < 1%.

5.2 Description of the dynamic programming algorithm

5.2.1 General notes on the procedure

In this section we describe how we calculate Zm computationally by enumerating all possible structures that an arbi-
trary set of strands can form. By neglecting pseudoknots, we can employ a dynamic programming methodology that
allows us to perform the enumeration in polynomial time (although the enumeration of certain classes of pseudoknots
using dynamic programming approaches is possible; see e.g. Ref. [10]).

We exactly calculate the loop entropies for each structure. Non-pseudoknotted loops of length s have an entropic
penalty given by [11, 9]

∆Sloop(s) = kB

[
ln vs +

3

2
ln
( γ
πs

)]
(S113)

where vs = 0.02 nucleotides3 is the volume within which two nucleotides can bind, and γ = 3/2b where b is the
persistence length of single-stranded RNA (we used b = 2.4 nucleotides here for consistency with Ref. [9]). The
length of the loop s is calculated by taking the number of phosphodiester bonds in the loop. For example, hairpin
loops comprised of s nucleotides have a length of s+1, while internal loops comprised of s nucleotides have a length
of s+ 2.

Let us first consider monomers. Given the no-pseudoknot approximation, if a binding event between sites i and j
is present, all the sites between i+ 1 and j − 1 can only pair to one another, and therefore can be treated like an RNA
molecule comprised of j − i− 1 binding sites. If another bond is formed between nucleotides i′ > i and j′ < j, there
are two loops that form: one of length j′− i′, and one of length j′− i′ and the other of length i′− i+ j′− j. Thus, the
length of the loop formed by the bond (i, j) depends on the structure in the middle j− i− 1 nucleotides. For example,
if i = 5 and j = 10, if there are no binding events in those middle binding sites, the length of the loop will be 14
nucleotides long, while if there is a binding event between sites 6 and 8, the loop will only be 7 nucleotides long.

To keep track of this feature, we define for each structure a quantity we call the phantom “outer loop”: how long
would a loop be that connects a binding site at position 0 with a binding site at position n + 1? This phantom outer
loop does not enter into the free energy calculation for n repeats, but does enter into the calculation when we use the
results from n repeats to calculate the landscape of a longer RNA with this number of repeats in the “middle” section.

Moving on to multimers, we consider a set of m RNA strands, each comprised of ni CAG repeats (with i ranging
from 1 to m). The procedure is effected by calculating the landscape for the set of sequences of lengths (n1, n2, ...,
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nm − 1), and then adding to that the ensembles of structures that can form for each possible binding event involving
the final binding site.

5.2.2 The recursive relation underlying the algorithm

We keep track of three quantities: (1) Z(n1, n2, ..., nm), the partition function for the set of sequences being consid-
ered; (2) Zs(n1, n2, ..., nm), the partition function of the ensemble of structures with a phantom outer loop of length
s; (3) Z̃(n1, n2, ..., nm), the value taken by Z when the entropy costs of the various phantom outer loops are taken
into account. These three quantities are defined as:

Zs(n1, n2, ..., nm) =
∑
σs

exp(−βFσs) (S114)

Z(n1, n2, ..., nm) =
∑
σ

exp(−βFσ) =
∑
s

Zs(n1, n2, ..., nm) (S115)

Z̃(n1, n2, ..., nm) =
∑
σ

e−β(Fσ+Fb−T∆Sloop(sσ)) =
∑
s

Zs(n1, n2, ..., nm)e−βFb+∆Sloop(s)/kB (S116)

where σ is a structure defined by a set of binding events, Fσ is its free energy and sσ is its phantom outer loop length;
σs is a structure with a phantom outer loop of length s and Fσs

is its free energy. As can be seen from these equations,
Z and Z̃ can both be written in terms of Zs.

Extending our previous definition of the phantom outer loop, for a set of strands it is defined as the loop formed by
a binding event between a binding site at position 0 of the first sequence and position nm + 1 of the final sequence. If
no closed loop is formed by such a binding event (e.g. for a dimer if there are no other intermolecular binding events)
there is no explicit entropy cost to the phantom outer loop forming (∆Sloop = 0). Instead, the penalty will be given by
∆Gassoc; we will add in appropriate factors of ∆Gassoc later in this section. For such phantom outer loops, it is useful
to consider their lengths to be infinite in the following formulae (despite the fact that ∆Sloop(∞) ̸= 0). This allows us
in formulae which have terms such as s− 2 and s− 3 to consider these phantom outer loops to be unchanged by such
subtractions.

We first consider the ensemble of structures in which the last binding site is unbound, and then consider each
possible site i to which the last binding site can bind. When the final binding site is bound to a site i, the set of RNA
molecules is effectively split in two parts, since by disallowing pseudoknots we disallow any binding events between
sites to the right of i and sites to the left. For multimers of m ≥ 3, some non-pseudoknotted structures are disallowed
by this assumption; however, as discussed in Supplementary Note 1.2.3, this actually works to our benefit since these
are always identical to structures previously enumerated and we ultimately wish to enumerate each structure only
once.

We describe our sum over binding sites i as the combination of a sum over the strand m′ and a separate sum over
the binding sites i′ in that strand. We also consider the case of m′ = m separately since when disallowing neighbor
bonds, the final site cannot bind to the one immediately preceding it (because of constraints on hairpin loop length).

Zs(n1, n2, ..., nm + 1) =Zs−3(n1, n2, ..., nm)+

m−1∑
m′=1

ni∑
i′=1

Zs−2(n1, n2, ..., nm′−1, i
′ − 1)Z̃(nm′ − i′, nm′+1, ..., nm)+

nm−1∑
i′=1

Zs−2(n1, n2, ..., nm−1, i
′ − 1)Z̃(nm − i).

(S117)

Here, the last sum includes nm if allowing neighbor bonds. We also require the base cases: Z∞(n1, n2, ..., nm−1, 0) =
Z(n1, n2, ..., nm−1); Z2(0) = Z5(1) = Z8(2) = 1 (the last case is not included when allowing neighbor bonds).

With this procedure, we are in principle able to calculate the landscapes of arbitrary multimers. The scaling of
compute time with repeat length is shown in Supplementary Fig. 9. Given the recursive nature of the algorithm, we
display only the additional computation time necessary to compute Eqns. S114-S116 for a set of m strands comprised
of ni = n repeats given that the landscapes for a set of m strands comprised of ni = n − 1 repeats and for a set of
m− 1 strands comprised of n repeats have both already been computed.
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Supplementary Figure 9: Compute time for multimer landscape calculation. The computation times for multimers
of m strands each comprised of n repeats is shown. Given the recursive nature of the algorithm, we display only the
additional computation time necessary to compute Z for a multimer comprised of n repeats given that the landscape
for a multimer comprised of n− 1 repeats has already been computed.

5.2.3 Computing Z for single complexes and correcting for symmetries

In the previous subsections, we showed how to compute the landscape of all structures that can be formed by a set of
m strands of different lengths. However, that landscape includes both m-mers as well as monomers and m− 1-mers,
dimers and m − 2-mers, etc. In this subsection we consider how to use these landscapes to compute Z for single
complexes comprised of m strands. This is analogous to the correction described in Supplementary Note 1.2.4. We
also correct for symmetries as discussed in Supplementary Note 1.2.3.

For m = 2, there are two types of structures: dimers and pairs of monomers. Therefore,

Z2(n1, n2) =
1

2

(
Z(n1, n2)− Z(n1)Z(n2)

)
. (S118)

The factor of 1/2 corrects for that every (asymmetric) dimer structure is counted twice in Z(n1, n2) (see Supple-
mentary Note 1.2.3). The subtraction accounts for that Z(n1, n2) includes not only dimers but pairs of monomers as
well.

For m = 3, there are three types of structures: trimers, 3 monomers, and 1 monomer and 1 dimer. We therefore
have

Z3(n1, n2, n3) =
1

3
Z(n1, n2, n3)−

1

3

(
Z(n1)Z(n2)Z(n3)+

2Z2(n1, n2)Z(n3) + 2Z2(n1, n3)Z(n2) + 2Z2(n2, n3)Z(n1)
)
. (S119)

The factor of 2 before each factor of Z2 accounts for the fact that Z(n1, n2, n3) overcounted the dimer & monomer
structures in the same way Z2 did (i.e. by a factor of 2). The factor of 2 here ensures we properly subtract the
contribution of dimers & monomers from Z(n1, n2, n3).

For m = 4 the calculation is somewhat complicated by our no-pseudoknot assumption. The system can form a
tetramer, 4 monomers, 1 trimer and 1 monomer, 2 monomers and 1 dimer, or 2 dimers. However not every set of two
dimers can form, since the pair of dimers (n1, n3), (n2, n4) looks like a pseudoknot in our model and was therefore
not enumerated. Our model therefore yields

Z4(n1, n2, n3, n4) =
1

4
Z(n1, n2, n3, n4)−

1

4

(
Z(n1)Z(n2)Z(n3)Z(n4)+

3Z3(n1, n2, n3)Z(n4) + 3Z3(n1, n2, n4)Z(n3) + 3Z3(n1, n3, n4)Z(n2)+

3Z3(n2, n3, n4)Z(n1) + 2Z2(n1, n2)Z(n3)Z(n4) + 2Z2(n1, n3)Z(n2)Z(n4)+

2Z2(n1, n4)Z(n2)Z(n3) + 2Z2(n2, n3)Z(n1)Z(n4) + 2Z2(n2, n4)Z(n1)Z(n3)+

2Z2(n3, n4)Z(n1)Z(n2) + 4Z2(n1, n2)Z2(n1, n2) + 4Z2(n1, n4)Z2(n2, n3)
)
. (S120)

The results for larger m proceed in a similar fashion.
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At this point it is straightforward to include the penalty for multimerization, which (as discussed in Supplementary
Note 2) we set to ∆Gassoc = 4.09 kcal/mol−kBT log(ρ/1 mol/L). Z2 is multiplied by one factor of exp(−β∆Gassoc);
Z3 by two factors; Z4 by three, etc.
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