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B I O P H Y S I C S

Self-assembly–based posttranslational 
protein oscillators
Ofer Kimchi1*, Carl P. Goodrich1, Alexis Courbet2,3,4, Agnese I. Curatolo1, Nicholas B. Woodall2,3,4, 
David Baker2,3,4, Michael P. Brenner1,5

Recent advances in synthetic posttranslational protein circuits are substantially impacting the landscape of cellular 
engineering and offer several advantages compared to traditional gene circuits. However, engineering dynamic 
phenomena such as oscillations in protein-level circuits remains an outstanding challenge. Few examples of bio-
logical posttranslational oscillators are known, necessitating theoretical progress to determine realizable oscillators. 
We construct mathematical models for two posttranslational oscillators, using few components that interact only 
through reversible binding and phosphorylation/dephosphorylation reactions. Our designed oscillators rely on 
the self-assembly of two protein species into multimeric functional enzymes that respectively inhibit and enhance 
this self-assembly. We limit our analysis to within experimental constraints, finding (i) significant portions of the 
restricted parameter space yielding oscillations and (ii) that oscillation periods can be tuned by several orders of 
magnitude using recent advances in computational protein design. Our work paves the way for the rational design 
and realization of protein-based dynamic systems.

INTRODUCTION
Protein oscillators play a major regulatory role in organisms ranging 
from prokaryotes to humans. In most known biological cases, the 
oscillation is realized through transcription/translation cycles. Few 
examples of purely posttranslational oscillators have been found in 
biology (1, 2). At the same time, posttranslational protein circuits 
are increasingly sought after for synthetic applications, since they 
have the potential to exhibit faster response to environment changes, 
allow for more direct control over the circuit behavior, be directly 
coupled to a functional output, and can be used in contexts that do 
not include the vast genetic apparatus (3–5). While significant recent 
work has enabled the design of synthetic posttranslational protein–
based logic gates (4, 5), engineering tunable dynamic phenomena 
such as oscillations in a synthetic posttranslational context remains 
an outstanding challenge (6, 7).

The best-studied example of biological posttranslational protein 
oscillators is the KaiABC system in cyanobacteria (8). By placing 
only the proteins KaiA, KaiB, and KaiC in a test tube, along with 
abundant adenosine triphosphate, the KaiC proteins collectively get 
sequentially phosphorylated and dephosphorylated, forming an 
oscillatory cycle (9, 10). While the KaiC proteins generally exist in a 
hexameric state, monomers are shuffled among the hexamers during 
only a certain phase of the oscillatory cycle (11). The KaiABC system 
demonstrates that protein oscillators need not use transcription/
translation cycles or large numbers of components to achieve oscil-
latory behavior.

Motivated by the KaiABC system, we set out to design a protein- 
based oscillator that could be reconstituted in vitro using only a 
small number of components at relatively high copy numbers, so 
that any resulting oscillations are not stochastic. To facilitate the 

future translation of this theoretical study to an experimental system, 
we base the architecture of our system on biochemical constraints 
and on a design space navigable through computational protein 
design. We constrain the kinetic reaction network to only include 
three protein species and to only allow reversible binding and 
phosphorylation/dephosphorylation enzyme reactions.

As in KaiABC, the oscillating system will cycle through periods 
of a protein species being phosphorylated or not. When the target 
protein is phosphorylated, the phosphorylation must induce a change 
to propel the global state along the oscillatory cycle. This change can 
be achieved by affecting the enzyme kinetics of the kinase and phos-
phatase in one of two ways: either by altering the conformation of 
the target protein or by directly modifying the kinase and phospha-
tase enzymes. We first consider systems that do not modify the kinase 
or phosphatase.

The simplest such system, a protein with one phosphorylation 
site being modified by a kinase and a phosphatase, cannot yield 
oscillations regardless of parameter choices (7). When two phos-
phorylation sites are included, oscillations are possible only under 
the assumption that each of the four possible phosphorylation states 
has significantly different rates of subsequent phosphorylations and 
dephosphorylations (7). While biology seems to have designed a 
system in KaiABC capable of undergoing the many conformational 
changes necessary to implement this form of oscillations (9), the 
design of even two (let alone several) protein structures from the 
same sequence remains a significant challenge for the field of com-
putational protein design (12).

These challenges are not unique to molecules with two phos-
phorylation sites. For example, since oscillations for molecules with 
two phosphorylation sites are effected by enzyme sequestration (7), 
we consider a molecule containing a single phosphorylation site 
alongside a kinase- or phosphatase-sequestering domain (or a binding 
domain for an external compound that itself contains an enzyme- 
binding domain). These systems are capable of producing oscillations—
but only if phosphorylation and binding accompany a significant 
conformational change in the molecule that modifies the rate constants 
of subsequent reactions. Even assuming that such a conformational 
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change were designed, we have found no evidence of sustained oscil-
lations in these systems within the parameter regimes of typical binding/
unbinding rate constants and typical kinase and phosphatase activity 
(i.e., the catalytic rate and Michaelis constants kcat and KM, discussed 
further below). See section S1 for further discussion.

Systems that focus on modifications to the enzymes themselves 
are therefore more likely candidates for the production of experi-
mentally realizable oscillations. Biology has found several ways to tie 
phosphorylation to enzymatic activity. The most straightforward 
conceptually, having the activity of an enzyme dependent on its 
own phosphorylation state (13) remains a challenge to implement 
in the context of computational protein design (14). However, the 
field has achieved remarkable success in the design of protein-protein 
interactions (15) which can be modified by phosphorylation (16, 17).

Bootstrapping off of this success, we consider proteins that self- 
assemble into multimeric functional kinases and phosphatases (18, 19). 
We are motivated, in part, by the success of using split proteases to 
implement posttranslational protein–based logic gates (4, 5). In our 
design, when the proteins’ binding interfaces are phosphorylated, 
their self-assembly is impeded, reducing the concentration of func-
tional enzymes available in the system.

Oscillations are thus achieved by the push and pull of two op-
posing factors: Self-assembled kinases inhibit the self-assembly of 
new proteins by phosphorylating both kinase and phosphatase 
monomers; meanwhile, self-assembled phosphatases counteract this 
inhibition. Incoherent inputs such as these are known to enhance 
the robustness of oscillations (20). Our overall oscillator design is 
motivated by analogy to known successful oscillators, particularly 
the dual-feedback genetic oscillator (1, 21–23). Just as that oscillator 
relies on the interplay between the inhibiting effects of LacI and the 
activating effects of AraC, our oscillations rely on the interplay be-
tween kinase and phosphatase multimers, which respectively inhibit 
and activate their own self-assembly (Fig. 1A).

The rest of our manuscript is organized as follows. First, we describe 
the oscillatory circuits and their experimental constraints. Next, we de-
velop simplified mathematical models for two distinct protein-based 
oscillators: In one, multimers are designed to form closed, bounded 

structures; in the other, they form unbounded fibers. We show that sim-
ple analytical formulae describing the first oscillator can predict both the 
regions of parameter space admitting oscillations and the oscillations’ 
resulting frequencies. We then demonstrate that the second oscillator 
design is complementary to the first in that it can admit robust and ex-
perimentally realizable oscillations in a regime of parameter space 
where the first cannot. Finally, we discuss the significance of our findings.

RESULTS
Self-assembly–based protein oscillators are designed within 
experimental constraints
Designed synthetic oscillators rely on few protein species with 
specified interactions
The main components of our oscillators are two proteins, which we 
call  and . Each individual protein of type  () has two comple-
mentary parts of a split kinase (phosphatase) and a phosphorylation 
site. When the respective sites are dephosphorylated, copies of protein 
 () can self-assemble into a functional kinase (phosphatase), which 
we call K (P). Thus, self-assembled kinases inhibit the self-assembly 
of new proteins, while self-assembled phosphatases counteract the 
inhibition. In addition to the proteins  and , we include a consti-
tutive phosphatase    ~ P   ; without it, a fixed point where all proteins are 
phosphorylated can preclude oscillations (see section S2).

The resulting circuit topology (Fig. 1A) is analogous to that used in 
the dual-feedback genetic oscillator (1, 23). The multimeric kinase 
plays an analogous role to the LacI protein in the genetic oscillator, 
repressing the production of new multimers; the multimeric phospha-
tase plays an analogous role to that of the AraC protein, activating the 
production (or more precisely, counteracting the kinase inhibition).

Two related networks based on these proteins can be designed. In 
the first, self-assembly is into closed symmetric homomultimers of 
specified size; in the second, the monomers are designed such that 
they self-assemble into one-dimensional unbounded fibers.
Experimental realizability constrains parameter sets
Because we are motivated by experimental feasibility, we consider 
only physically realizable parameters for our models. Binding rates 

Fig. 1. Bounded self-assembly oscillator. (A) Oscillator topology. By phophorylating monomers, kinase multimers (red; top) inhibit their own and phosphatase multimer 
(blue; bottom) self-assembly. Similarly, phophatase multimers counteract this inhibition, as do constitutive phosphatases (center). (B) Bounded self-assembly reactions. 
Monomers contain two halves of a split enzyme: either kinase (red; top) or phosphatase (blue; bottom). Monomers can self-assemble into multimers of specified size 
(here, tetramers are pictured, corresponding to n = m = 4). Kinase (phosphatase) multimers can (de)phosphorylate the monomers. A constitutive phosphatase is also able 
to dephosphorylate the monomers (not pictured). Phosphorylated monomers cannot participate in the self-assembly. Reactions are shown in pictorial form above each 
corresponding chemical equation. The full set of differential equations corresponding to these reactions is given in eq. S1.
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kb are typically in the range 10−2 to 100 M−1s−1 (24) with dissocia-
tion constants kd typically in the 10−3 to 103 M range (25). Both of 
these quantities can be tuned on the basis of the geometry, energy, 
and symmetry of the binding interface between the proteins, which 
we assume here to be designed de novo. Less straightforward to de-
sign are the Michaelis constants and catalytic rates of the kinase and 
phosphatase, especially since these depend not only on the enzyme 
but on the substrate. Mutational screens can be used to adjust these 
parameters, but predicting the effect of a mutation on kcat or KM is 
highly nontrivial (26). We were unable to find studies measuring 
kinase and phosphatase rates on the same substrate. Instead, as a 
standard to demonstrate physical realizability, we consider the pa-
rameters for sample Ser/Thr enzymes: wild-type -phosphatase act-
ing on para-nitrophenylphosphate (kcat = 2.0 × 103 s−1; KM = 1.0 × 
104 M) and wild-type MST4 (kinase) acting on the short peptide 
chain NKGYNTLRRKK (kcat = 3.1 s−1; KM = 14 M) (26, 27). We 
assume throughout that the constitutive phosphatase    ~ P    is governed 
by the same enzymatic rate constants as the self-assembled P. We also 
treat the self-assembled enzyme as only one functional protein be-
cause the copies of the enzyme are all colocalized.

Bounded self-assembly can yield oscillations whose 
behavior is well-predicted by analytical formulae
The onset of oscillations for the bounded self-assembly system 
is well-predicted by two dimensionless parameters
We first consider a system where unphosphorylated kinase and 
phosphatase monomers self-assemble in an all-or-nothing manner 
into closed symmetric homomultimers. We denote by n the num-

ber of kinase monomers  in the functional kinase multimer K and 
by m the analogous number of phosphatase monomers  in the 
multimer P. The reaction network is shown in Fig. 1B.

Since the full equations describing this bounded self-assembly 
system (eq. S1) are too complex to directly tackle analytically, we 
numerically integrate them within the parameter ranges outlined 
above (section S5). Our results, shown in Fig. 2, demonstrate a sig-
nificant portion of parameter space within experimental constraints 
capable of admitting sustained oscillations.

To simplify these equations to an analytically tractable form, 
we make the Michaelis-Menten approximation that enzymatic 
intermediates are in quasi-steady state. We then make the approxi-
mation that the enzyme and substrate concentrations are low com-
pared to the Michaelis constants, such that the concentration of 
enzymatic intermediates can be entirely neglected within our analytical 
approximations (section S2). This approximation, like others that 
we will consider, is not obeyed by all oscillating solutions found 
numerically (Fig. 2) but is nonetheless useful in clarifying the funda-
mentals of a large swath of the oscillations. We find that, in contrast 
to well-known examples from other systems that rely on enzyme 
sequestration to achieve oscillations (6, 7), neglecting enzyme se-
questration does not preclude oscillations for our systems.

To reduce our systems further to only two differential equations, 
we assume a separation of timescales between the self-assembly and 
the enzymatic activity. In particular, we assume that phosphorylation/
dephosphorylation reactions equilibrate much faster than self- assembly. 
The opposite separation–of–timescales limit yields oscillations only 
for extremely large values of m, which are infeasible to realize 

Fig. 2. Bounded self-assembly can yield oscillations using experimentally realizable parameters. Numerical integration of eq. S1 displays parameter regimes lead-
ing to oscillations within experimental constraints. Each subplot shows the location of oscillating parameter sets as a function of kd and kd for given kb and kb; the 
latter two are varied for each subplot. Aside from experimental constraints (see main text for discussion), we set n = m = 2, tot = tot = 10 M, and     ̃ P    tot   =  10   −4   M. Blue 
points denote parameter sets leading to sustained oscillations; yellow points denote parameter sets leading to steady state. To the right of the plot, we show a few exam-
ple trajectories in K-P phase space. The closed trajectories correspond to sustained oscillations; the final trajectory, the spiral, corresponds to a decaying oscillation and 
therefore to a yellow point in the figure.
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experimentally (see further discussion in section S4). We thereby 
arrive at the following two-dimensional system of equations

   

  dK ─ dt   =  k  b     (
        tot   − nK ─ 
1 +         K _ 

P +   ~ P  
 
   
)

     
n

  −  k  u   K

    

  dP ─ dt   =  k  b     (
        tot   − mP ─ 
1 +         K _ 

P +   ~ P  
 
   
)

     
m

  −  k  u   P

    (1)

We briefly define the parameters: kb is the binding rate for  
into its multimeric state, ku is the respective unbinding rate, and 
kd is the inverse ratio of the two; K is the specificity constant 
kcat/KM for the kinase K acting on , P is the same for the phospha-
tase P, and  = K/P; tot is the total concentration of monomeric 
 added to the system, a conserved quantity. Similar quantities are 
defined for . We assume the concentration of the constitutive 
phosphatase    ~ P   > 0  throughout (see section S2).

To describe the oscillatory behavior of the system, we seek the 
eigenvalues of the Jacobian in the vicinity of a fixed point (K⋆, P⋆). 
Oscillations require coupling between the equations, motivating the 
approximations that in the oscillatory regime,         K   ⋆  ≫  P   ⋆  +   ~ P    (and 
same for ), tot ≫ nK⋆, and tot ≫ mP⋆. Defining the dimension-
less concentrations    ̃   K   ⋆   =  K   ⋆  /   ~ P    and    ̃   P   ⋆   =  P   ⋆  /   ~ P   , the fixed point in 
these limits is given by

      ̃   P   ⋆     
(n+1)

  = γ  (  ̃   P   ⋆   + 1)   
m

    
  ̃   K   ⋆   = α    ̃   P   ⋆     

(n/m)
 
      (2)

where  and  are dimensionless parameters defined by

   


  
=   

 k d  
m  
 ─ 

 k d  
n+1 

     (           ─    tot     )     
nm

    (        tot   ─         )     
(n+1)m

     ~ P     (m−n−1) 
    



  

=   
 k d  

n/m 
 ─  k  d  
     (     

         tot   ─          tot     )     
n
     ~ P     (n−m)/m 

    (3)

We constrain ourselves to m ≤ n + 1 so that, within our approx-
imations, there is no more than one physical fixed point in the system 
as long as    ~ P   > 0 , simplifying our analysis. (When no solutions to 
Eq. 2 exist, our assumptions leading to it break down.)

Sustained oscillations in the system typically correspond to com-
plex eigenvalues of the Jacobian with positive real parts. However, 
following the Poincaré-Bendixson theorem, as long as our system 
has a single fixed point, instability of the fixed point must imply 
oscillations even if they are beyond the linear regime. Translated into 
constraints on P⋆, instability of the fixed point corresponds to

    (     
(m − 1 )  k  u   − (n + 1 )  k  u    ──────────────  (n + 1 )  k  u   +  k  u  

   )      P   ⋆  ─ 
  ~ P  

   > 1   (4)

We directly verify Eq. 4 in fig. S6.
We now proceed to express Eq. 4 only in terms of the input pa-

rameters. Because Eq. 2 cannot be solved for P⋆ for general n, m, 
we consider the approximation that   P   ⋆  =     1/(n+1−m)   ~ P   ≫   ~ P   , equiv-
alent within the constraint m < n + 1 to  ≫ 1. This approximation 
is most accurate for small values of m, since fewer terms are neglect-

ed. The approximation is motivated by the intuition that oscilla-
tions require P to be non-negligible compared to    ~ P   ; indeed, an op-
posite self-consistent solution, in which   P   ⋆  ≪   ~ P   , is incompatible 
with oscillations.

By simplifying Eq. 4 within this limit where   P   ⋆  =     1/(n+1−m)   ~ P   , we 
find that the system oscillates when

   ≡   
(m − 1 )  k  u   ─ (n + 1 )  k  u  

   > 1  (5)

This corresponds to ensuring a positive left-hand side in Eq. 4 (see 
fig. S6).

 The implication of Eq. 5, that oscillations require a larger disso-
ciation rate of the phosphatase monomers compared to the kinase 
monomers (at least, for n + 2 ≥ m), agrees with intuition found by 
visualizing individual oscillation cycles (Fig. 3A). In K-P space, os-
cillations proceed in a counterclockwise fashion: Starting from the 
unphosphorylated state, the monomers self-assemble into multimers 
(top right). The larger dissociation rate of phosphatase multimers 
leads those to dissociate first and get phosphorylated by the abundant 
kinase multimers (bottom right). Next, the kinase multimers slowly 
dissociate, enabling the gradual dephosphorylation and self-assembly 
of the phosphatase monomers by the constitutive and self-assembled 
phosphatases (bottom left). Once kinase multimer levels have de-
creased and enough phosphatase multimers have formed, the latter 
quickly dephosphorylate the remaining monomers (top left), and the 
system returns to its initial state (top right).

We verify that the approximate formula given by Eq. 5 is valid in 
describing Eq. 1 by comparing it to oscillations found by random 
parameter searches in Fig. 3B. We numerically integrate Eq. 1 with 
random parameters chosen to satisfy the experimental constraints 
described previously (including setting  = ) and with n = m = 2. 
We constrain concentrations tot and tot to be within 10−3 to 102 M, 
while we set the bounds of    ~ P    to 10−8 and 10−2 M. For each parameter 
set, we numerically estimate the fixed point using Python’s scipy.
optimize.root function. We only show parameter sets estimated to 
agree with the approximations described before Eq. 2 (with >5× 
substituted for ≫). We found no oscillations in ∼2.5 × 104 parameter 
sets for which K or P is less than  ( P   ⋆  +   ~ P   ) /  K   ⋆  . Each blue (yellow) 
point in the figure corresponds to a single parameter set found to 
produce (not produce) oscillations starting from initial conditions 
of (K, P) = (0,0). Oscillations are almost exclusively found in the 
quadrant  > 1,  > 1. Values of  slightly less than unity are also 
found to produce oscillations, as shown in the figure.

These results show that oscillations are found when the dissoci-
ation rate of the phosphatase multimer is in a middle range between 
two extremes. To see oscillations, the phosphatase multimer must 
dissociate significantly faster than the kinase multimer ( > 1); how-
ever, the dissociation rate must concurrently be small enough such 
that the fixed point concentration of phosphatase multimer is larger 
than the constitutive phosphatase concentration ( > 1). In contrast 
to intuition from other systems, which signifies that higher-order 
nonlinearities increase the parameter range producing oscillations 
(6), here, we found that more nonlinear self-assembly (i.e., higher 
values of n and m) makes oscillations less frequent. We find that 
oscillations are robust to even order-of-magnitude variations in most 
other parameters (section S3 and fig. S2).

Our results suggest that oscillations in the concentrations of un-
phosphorylated monomers or of phosphatase multimers may be 
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most straightforward to visualize experimentally, as these concentra-
tions typically vary by several orders of magnitude across an oscillatory 
cycle (fig. S8). Parameter sets yielding largest oscillation amplitudes 
are also typically farthest from the bifurcation point (fig. S10).
The frequency of resulting oscillations can be well-predicted by 
assuming that kinase multimer dissociation is rate limiting
We next seek to predict how system parameters tune the frequency 
of resulting oscillations when they appear. Within the linear regime 
around the fixed point, in the limit of Eq. 5, the frequency of oscil-
lations  is predicted to be

    pred  2   = −   1 ─ 4    [(n + 1 )  k  u   + (m − 1 )  k  u  ]   2  + nm  k  u    k  u    (6)

While Eq. 6 agrees well with the true squared frequency for those 
parameter sets where it is positive, oscillations are frequently found 
in the nonlinear regime in which it is not applicable (fig. S7A). 
However, the intuition given by Eq. 6, that oscillation frequency is 
determined by the unbinding rates of the kinase and phosphatase 
multimers, may still be valid outside the linear regime of the fixed 
point. This intuition is reasonable given the separation–of–timescales 
limit in which we are operating, of enzymatic reactions equilibrating 
much faster than self-assembly. Since oscillations for the n = m = 2 

system that we considered numerically require that ku > ku (i.e.,  > 1), 
Eq. 6 implies that the limiting reaction in the oscillations is the un-
binding of the kinase multimers. To test that implication, we com-
pare ku to the frequency of oscillations found through numerical 
integration in Fig. 3C. (We make no constraints on the fixed points 
of the parameter sets considered here.) We find a strong correlation 
(R2 = 0.66; R2 = 0.93 in log space) and a root mean square relative 
error of ∼3.9, demonstrating that ku can accurately predict the fre-
quency of oscillations in this system.

Oscillations found within experimental constraints for Eq. 1 have 
periods ranging from fractions of a second to >1 day (fig. S7B). For 
oscillations found for the full system of equations plotted in Fig. 2, 
we find periods within a slightly more constrained range than for 
the simplified system but still spanning orders of magnitude, between 
~1 min and >1 day.

Unbounded self-assembly can yield oscillations within 
experimental constraints in the limit of fast self-assembly 
compared to enzymatic activity
We now consider a second system in which individual species  and 
 can self-assemble incrementally into one-dimensional unbounded 
fibers (Fig. 4A). Unlike the bounded case in which no phosphorylation 

Fig. 3. Analytical results for bounded self-assembly oscillator. In this figure, we show results from the analytically simplified bounded self-assembly oscillator (Eq. 1), 
using n = m = 2. (A) Oscillation schematic. We visualize a sample oscillation using randomly and arbitrarily chosen parameters satisfying experimental constraints. Oscil-
lations require phosphatase multimers (blue) to dissociate faster than kinase multimers (red). The system starts with self-assembled kinases and phosphatases (top right). 
After rapid phosphatase disassembly and phosphorylation by the kinase multimers (bottom right), the kinases slowly disassemble, which enables the gradual dephos-
phorylation and self-assembly of the phosphatase monomers (bottom left). The assembled phosphatases are then able to rapidly promote their own and kinase self- 
assembly through dephosphorylation, returning the system to its initial state (top right). (B) Onset of oscillations. Numerical integration demonstrates consistency with 
Eq. 5 for the appearance of oscillations in the appropriate limits. Each point represents a random set of parameters, sampled within the experimentally realizable limits as 
described in the main text. Oscillating (blue) and non-oscillating (yellow) parameter sets can be well-separated by dimensionless combinations of parameters  and . 
Dashed lines show where the dimensionless parameters on the axes equal unity. (C) Oscillation frequency. Intuition from linear stability analysis of the fixed point sug-
gests that for the n = m = 2 system considered numerically, oscillation frequency may be determined by the dissociation rate of kinase multimers,   k  u   . Numerical integra-
tion demonstrates that   k  u    is indeed highly predictive of oscillation frequency (R2 ≈ 0.66; R2 ≈ 0.93 in log space) and underestimates the true frequency by a typical factor 
of ~4. Black dashed line shows  = ku.

D
ow

nloaded from
 https://w

w
w

.science.org on January 03, 2024



Kimchi et al., Sci. Adv. 2020; 6 : eabc1939     16 December 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 8

sites are accessible in the multimeric state, in this system, one is 
(corresponding to the final protein in the fiber). An n-mer of spe-
cies X (where X is either  or ), Xn, can be created either from binding 
two smaller molecules Xm and Xn−m or from the spontaneous break-
ing of a bond of a larger molecule. The concentration of Xn decreases 
when an Xn molecule either binds to any other molecule or breaks 
any of its n − 1 bonds. The equations for self-assembly of species X 
are therefore given by

   
   dX  n   ─ dt   =

  
   k  bX   (      

m=1
  

n−1

    X  m    X  n−m   − 2  X  n       
m=1

  
∞

    X  m   )   
    

 
  

 +  k  uX   (  2    
m=n+1

  
∞

    X  m   − (n − 1 )  X  n   )   
    (7)

As in the first system, each protein of type  () includes a split 
kinase (phosphatase). While in the bounded system, enzymes re-
quired exactly n or m monomers to self-assemble, here, an enzyme 
is created by any group of more than one monomer (i.e., Xn is a 
functional enzyme as long as n ≥ 2). We assume that when a multi-
mer is phosphorylated, its final monomer dissociates from the fiber 
and cannot reassociate in its phosphorylated state. A less stringent 
assumption, that the phosphorylated monomer does not dissociate 
automatically but merely prevents new monomers from binding to 
that end of the molecule, appears to be incompatible with oscilla-
tions, at least in both separation–of–timescales limits.

The full equations describing the system are given in the Supple-
mentary Materials (eq. S8). As previously, we search for a two- 
dimensional set of simplified equations by considering a separation 
of timescales between enzymatic reactions and self-assembly, along 
with the same simplifying assumptions as considered for the bound-
ed self-assembly system (eq. S9). The limit considered for the first 
system, of fast phosphorylation/dephosphorylation compared to 
self-assembly, would disallow multimers from forming in this system, 
since, here, phosphorylation is accompanied by dissociation of the final 
multimer in the chain. Therefore, the separation–of–timescales limit 
considered in the bounded self-assembly system is no longer applicable 
for this system. Instead, we consider the opposite limit, of fast self- 
assembly compared to enzymatic activity. At steady state, Xn is given by

   X  n   =    k  uX   ─  k  bX       (     x ─  
1 + x +  √ 

_
 1 + 2x  
   )     

n
   (8)

where x = 2kbXXtot/kuX = 2Xtot/kdX. The same steady state is reached 
even if self-assembly involves binding and unbinding only a single 
monomer at a time.

The concentrations of phosphorylated monomers as a function 
of time are given by p and p. The total amount of kinase present is 
given by  K =   i=2  ∞      i    and similarly for phosphatase. Since only the 
phosphorylation site of the final monomer in a multimer is exposed, the 
total number of available phosphorylation sites in the  species is given 
by    i=1  ∞      i    (and similarly for ). The system can be described by two 
differential equations for k = 2(tot − p)/kd and p = 2(tot − p)/kd

   

  dk ─ dt   =

  

    − 2    K   k ─ 
1 +  √ 
_

 1 + 2k  
   K +    P   (     2    tot   ─  k  d  

   − k )  (P +   ~ P  ) 

     
  
dp

 ─ dt   =
  

    
− 2    K   p ─ 

1 +  √ 
_

 1 + 2p  
   K +    P   (     2    tot   ─  k  d  

   − p )  (P +   ~ P  ) 
     

K =
  

  k  d      k   2   ──────────────────   
(1 +  √ 

_
 1 + 2k   ) (1 + k +  √ 

_
 1 + 2k  )
  

     

P =

  

  k  d     
 p   2 
  ──────────────────   

(1 +  √ 
_

 1 + 2p   ) (1 + p +  √ 
_

 1 + 2p  )
  

    (9)

Unlike in the previous system for which the frequency and onset 
of oscillations can be determined by simple formulae by taking a 
limit of the two-dimensional system, no such limits give similarly 
straightforward results for Eq. 9. Instead, we analyze Eq. 9 through 
random parameter searches (Fig. 4B). As shown in the figure, we 
find that although these equations assume an opposite separation–
of–timescales limit to that yielding experimentally realizable oscilla-
tions for the system of bounded self-assembly, they can nevertheless 
yield oscillations within a significant region of parameter space con-
sistent with experimental constraints.

We find that increased values of tot/tot and decreased values 
of    ~ P   /    tot    lead to more robust oscillations in this system; see fig. S3 
for further discussion of oscillation robustness. The periods of os-
cillations found ranged from <1 min to >1 day (fig. S7B). Finally, we 
find that the concentrations of phosphatase multimers and unphos-
phorylated phosphatase monomers typically vary by several orders 
of magnitude across an oscillatory cycle (fig. S9), suggesting that 
oscillations may be most straightforward to visualize experimentally 
by measuring these concentrations.

Fig. 4. Unbounded self-assembly oscillator. (A) Unbounded self-assembly reactions. 
We consider a related system to that shown in Fig. 1 but relying on kinase and 
phosphatase monomers that self-assemble into unbounded fibers of arbitrary length. 
In addition, we assume that the final monomer of each fiber can get phosphorylated 
by a kinase multimer, at which point it can no longer rejoin the fiber until it is 
dephosphorylated. (B) Unbounded self-assembly oscillations using experimentally 
realizable parameters. Numerical integration of Eq. 9 displays parameter regimes 
leading to oscillations within experimental constraints. Eq. 9 was used in place of 
the full system of equations (eq. S8) because of the infinite dimensionality of the 
latter. tot sets the concentration scale.
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DISCUSSION
In summary, we have presented two posttranslational protein–based 
oscillators motivated by the biological KaiABC system and by the 
synthetic dual-feedback genetic oscillator. Both systems that we 
present rely on split kinase and phosphatase self-assembling to form 
functional enzymes and on that self-assembly being inhibited by 
phosphorylation of the split monomers. The two systems differ mainly 
in the nature of the self-assembly as all-or-nothing into bounded 
structures of specified size or incremental into unbounded one- 
dimensional fibers.

Both systems are capable of producing oscillations within exper-
imental constraints, using experimentally determined wild-type 
values for kinase and phosphatase activity and for a range of de-
signed self- assembly rates. We have shown that neither complex 
reactions nor large number of species are necessary to achieve oscil-
lations: Both networks that we present use only three protein 
species interacting only through reversible binding and phospho-
rylation/dephosphorylation reactions, and the resulting oscillations 
can be understood as arising from a minimal system of two differ-
ential equations in both cases.

Although the systems that we described shared much in com-
mon, they produced robust oscillations in opposite separation–of–
timescales limits from one another: The first primarily oscillates when 
self-assembly is much slower than enzymatic reactions; the second 
when it is much faster. These two networks are thus complementary: 
Depending on the parameter regime most easily accessible to an 
experimentalist, one or the other network might be preferable to 
implement. Nevertheless, the conditions giving rise to oscillations 
shared similarities in the two systems. Smaller values of constitutive 
phosphatase (equivalent to larger values of  in the case of bounded 
self-assembly) lead to more robust oscillations in both systems, as 
do smaller values of kd (i.e., larger values of ).

Our work paves the way toward the rational design and experi-
mental realization of protein-based far-from-equilibrium dynamic 
systems. The models described here were designed to be feasible to 
synthesize experimentally and are guiding an implementation in 
the test tube that is currently under way.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/51/eabc1939/DC1
View/request a protocol for this paper from Bio-protocol.
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Supplementary Material

S1 Other oscillation schemes attempted

Before trying self-assembly based oscillations, we tried implementing oscillations based on

phosphorylations or binding events accompanying a conformational change in the molecule.

Such conformational changes can be difficult to design, but the recently-published LOCKR sys-

tem (28, 29) demonstrates one way in which binding can accompany a conformational change.

We considered a molecule A which can be phosphorylated or bind to another molecule. We

assume that when it is bound or phosphorylated, the molecule undergoes a conformational

change; in the language of the LOCKR system, it opens. We assume that the rate of binding of

any molecule to the closed state A? can be smaller than the analogous binding rate to the open

state, but no other asymmetries between the rates of analogous reactions are allowed. We did not

make simplifying assumptions such as the Michaelis-Menten approximation when considering

these systems.

We found oscillations are possible if A can bind, and thus sequester, free kinases (Fig. S1a).

Oscillations are also possible if A can bind a separate “key” peptide b, which itself either binds

free kinase (K) or phosphatase (P ) molecules. Finally, oscillations can also be found if b, either

alongside or instead of binding kinase or phosphatase, can itself get phosphorylated. We assume

phosphorylated b is inert, except in that it can interact with phosphatase to get dephosphorylated

(Fig. S1b). However, we found no evidence of possible oscillations within the experimental

limits considered in this paper, after trying for each network 2 ⇥ 106 random parameter sets

logarithmically distributed within the acceptable ranges.

For example, although experimentally realizable values of ⌘ and ⌘⇢ are near (slightly above)

unity, we found no evidence of oscillations for the system shown in Fig. S1a with values of ⌘ =



Figure S1: Reaction networks giving oscillations outside of experimentally realizable
regime. See text for discussion.

⌘⇢ greater than 0.02, a difference of two orders of magnitude from the experimentally realizable

regime. With future advances in protein engineering, the realm of experimental realizability

may well expand and these networks may be able to yield in vitro oscillations. However, our

work here is focused on those parameters that are currently reasonably accessible in the lab as

described in the main text, and we therefore do not consider the networks shown in Fig. S1

further.



S2 Full kinetic equations and derivations of main text equa-
tions

Bounded self-assembly

We denote the concentration of phosphorylated (monomeric)  by p (and similarly for ⇢).

The concentration of the enzyme-substrate complex comprised of  and K bound is denoted

 ·K. Binding, unbinding, and catalytic rate constants for the enzyme-substrate complexes are

given by kbK, kuK, and kcK, respectively. We use similar conventions for all other enzyme-

substrate complexes. The full equations for the first system are:



d

dt
= � n(kb

n + kuK)� kbKK + kuK ·K + kcP(
p · P + p · P̃ )

d⇢

dt
= �m(kb⇢⇢

m + ku⇢P )� kbK⇢⇢K + kuK⇢⇢ ·K + kcP⇢(⇢
p · P + ⇢p · P̃ )

dK

dt
= kb

n � kuK � kbKK + (kuK + kcK) ·K � kbK⇢⇢K + (kuK⇢ + kcK⇢)⇢ ·K
dP

dt
= kb⇢⇢

m � ku⇢P � kbP
pP + (kuP + kcP)

p · P � kbP⇢⇢
pP + (kuP⇢ + kcP⇢)⇢ · P

dp

dt
= � kbP

p(P + P̃ ) + kuP(
p · P + p · P̃ ) + kcK ·K

d⇢p

dt
= � kbP⇢⇢

p(P + P̃ ) + kuP⇢(⇢
p · P + ⇢p · P̃ ) + kcK⇢⇢ ·K

d ·K
dt

= kbKK � (kuK + kcK) ·K
d⇢ ·K
dt

= kbK⇢⇢K � (kuK⇢ + kcK⇢)⇢ ·K
dp · P

dt
= kbP

pP � (kuP + kcP)
p · P

d⇢p · P
dt

= kbP⇢⇢
pP � (kuP⇢ + kcP⇢)⇢

p · P

dp · P̃
dt

= kbP
pP̃ � (kuP + kcP)

p · P̃

d⇢p · P̃
dt

= kbP⇢⇢
pP̃ � (kuP⇢ + kcP⇢)⇢

p · P̃

dP̃

dt
= � kbP

pP̃ + (kuP + kcP)
p · P̃ � kbP⇢⇢

pP̃ + (kuP⇢ + kcP⇢)⇢ · P̃ .

(S1)

Making only the Michaelis-Menten approximation for enzymatic reactions and accounting

for conservation laws, the equations can be reduced to the following four-dimensional system

of equations:



dK

dt
= kb

n � kuK

dP

dt
= kb⇢⇢

m � ku⇢P

d

dt
= � n(kb

n � kuK)� ⌘KK + ⌘P
p(P + P̃ )

d⇢

dt
= �m(kb⇢⇢

m � ku⇢P )� ⌘K⇢⇢K + ⌘P⇢⇢
p(P + P̃ )

tot = + p + nK + (n+ 1)
K

KMK

+
p(P + P̃ )

KMP

+ n
⇢K

KMK⇢

⇢tot = ⇢+ ⇢p +mP +
⇢K

KMK⇢

+ (m+ 1)
⇢pP

KMP⇢

+
⇢pP̃

KMP⇢

+m
pP

KMP

(S2)

where as in the main text, ⌘K is the specificity constant kcKkbK/(kuK + kcK) =

kcK/KMK , and similar constants are similarly defined for other reactions.

In order to reduce our system further to only two differential equations, we assume a sepa-

ration of timescales between the self-assembly and the enzymatic activity. In particular, we

assume that phosphorylation/dephosphorylation reactions equilibrate much faster than self-

assembly; see Section S4 for consideration of the opposite limit. Within the Michaelis-Menten

approximation, this can be written as:

⌘KK = ⌘P
p(P + P̃ )

⌘K⇢⇢K = ⌘P⇢⇢
p(P + P̃ )

(S3)

Making the approximation that the Michaelis constants are large compared to concentrations

of the various components (such that tot = + p + nK, and likewise for ⇢tot) we arrive at

 =
tot � nK

1 + ⌘
K

P+P̃

⇢ =
⇢tot �mP

1 + ⌘⇢
K

P+P̃

(S4)

which, in conjunction with Eqn. S2, leads to Eqn. 1.



Bounded self-assembly: Evaluating the trace of the Jacobian

In order to derive Eqn. 4, we start by computing the Jacobian of Eqn. 1 and taking its trace.

The trace can then be simplified by making the same approximations made to arrive at Eqn. 2

(namely, that ⌘K? � P ? + P̃ , ⌘⇢K? � P ? + P̃ , tot � nK?, and ⇢tot � mP ?). It is useful at

this point to use Eqn. 2 to express the trace entirely in terms of P ?.

tr(J) =
kd
⌘⇢

ku⇢mP ?⇢tot

✓
⌘⇢tot

⌘⇢tot

◆n

(kd⇢P
?)�

n+1
m �

0

@
kbn2k

n
m
d⇢P

?(n/m)
⇣

⌘⇢tot
⌘⇢tot

⌘n

tot
+ (n+ 1)ku +

ku⇢m2P ?

⇢tot
+ ku⇢

1

A .

(S5)

We now replace the factors of P ?(�n+1
m ) and P ?(n/m) with their appropriate expressions

given Eqn. 2, getting a far cleaner expression:

tr(J) = �(n+ 1)ku � n2ku
K?

tot
� ku⇢ +mku⇢

✓
P ?

P ? + P̃
�m

P ?

⇢tot

◆
. (S6)

After factoring out nku, we can rely on the approximations made previously that tot �

nK?, and ⇢tot � mP ? to neglect the second and final terms, leading to

tr(J) = �(n+ 1)ku � ku⇢ +mku⇢
P ?

P ? + P̃
(S7)

which we set greater than zero to arrive at Eqn. 4.

The P̃ = 0 case

Eqns. S2 demonstrate that if P̃ = 0, a new fixed point appears at  = ⇢ = K = P = 0. The

Jacobian at that fixed point has two negative and two zero eigenvalues. We find no evidence

of oscillations in Eqns. S1 with P̃ = 0 in 5 ⇥ 104 random parameter sets, nor do we find any

oscillations when plotting the analogue of Fig. 2 for the case of P̃ = 0.



Intuitively, if a system has no constitutive phosphatase activity, then if any fluctuation brings

the total number of dephosphorylated ⇢ monomers to a value less than m, no recovery of phos-

phorylation activity is possible. In the presence of constitutive phosphatase, this is no longer

true, leading to oscillation robustness. We therefore assume P̃ > 0 throughout the manuscript.



Unbounded self-assembly

The full equations describing the second system are:

dn

dt
= kb

 
n�1X

m=1

mn�m � 2n

1X

m=1

m

!
+ ku

 
2

1X

m=n+1

m � (n� 1)n

!

+
1X

m=2

(kcKn+1 · m � kbKnm + kuKn · m) + �n,1kcP

 
p · P̃ +

1X

m=2

p · ⇢m

!

d⇢n
dt

= kb⇢

 
n�1X

m=1

⇢m⇢n�m � 2⇢n

1X

m=1

⇢m

!
+ ku⇢

 
2

1X

m=n+1

⇢m � (n� 1)⇢n

!

+
1X

m=2

(kcK⇢⇢n+1 · m � kbK⇢⇢nm + kuK⇢⇢n · m) + �n,1kcP⇢

 
⇢p · P̃ +

1X

m=2

⇢p · ⇢m

!

dP̃

dt
= � kbP

pP̃ + (kuP + kcP)
p · P̃ � kbP⇢⇢

pP̃ + (kuP⇢ + kcP⇢)⇢
p · P̃

dp

dt
= kcK

1X

n=1

1X

m=2

n · m � kbP
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P̃ +

1X

m=2

⇢m
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1X

m=2
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!
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1X
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1X

m=2

⇢m

!
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⇢p · P̃ +

1X

m=2

⇢p · ⇢m

!

dn · m

dt
= kbKnm � (kuK + kcK)n · m

d⇢n · m

dt
= kbKnm � (kuK + kcK)n · m

dp · ⇢m
dt

= kbP
p⇢m � (kuP + kcP)

p · ⇢m

dp · P̃
dt

= kbP
pP̃ � (kuP + kcP)

p · P̃
d⇢p · ⇢m

dt
= kbP⇢⇢

p⇢m � (kuP⇢ + kcP⇢)⇢
p · ⇢m

d⇢p · P̃
dt

= kbP⇢⇢
pP̃ � (kuP⇢ + kcP⇢)⇢

p · P̃ .

(S8)

Within the Michaelis-Menten approximation and after accounting for conservation laws,

these equations become:



dn

dt
= kb

 
n�1X

m=1

mn�m � 2n

1X

m=1

m

!
+ ku

 
2

1X

m=n+1

m � (n� 1)n

!

+ ⌘K(n+1 � n)K + �n,1⌘P
p(P + P̃ )

d⇢n
dt

= kb⇢

 
n�1X
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1X

m=1

⇢m

!
+ ku⇢

 
2

1X

m=n+1

⇢m � (n� 1)⇢n
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+ ⌘K⇢(⇢n+1 � ⇢n)K + �n,1⌘P⇢⇢
p(P + P̃ )

K =
1X

n=2

n; P =
1X

n=2

⇢n

tot = p +
1X

n=1

nn +
1X

n=2

n

1X

m=1

(
(n+m)m

KMK

+
n⇢m
KMK⇢

) +
p(P + P̃ )

KMP

⇢tot = ⇢p +
1X

n=1

n⇢n +
1X

n=2

n

1X

m=1

m⇢m
KMK⇢

+
1X

n=2

⇢n(
np

KMP

+
(n+ 1)⇢p

KMP⇢

) +
⇢pP̃

KMP⇢
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(S9)

In order to arrive at Eqn. 9, we assume a separation of timescales between the self-assembly

and the enzymatic activity. In particular, we assume that self-assembly reactions equilibrate

much faster than phosphorylation/dephosphorylation. This is the opposite separation-of-timescales

limit to that considered in the bounded self-assembly case. The reason we consider this limit

here is that the limit of fast enzymatic activity compared to self-assembly (the limit consid-

ered for the bounded system) would result in any multimers immediately being broken up into

monomers, since phosphorylation in this system is accompanied by the final monomer in the

chain dissociating from the multimer.

We can then write the dynamics of the system only in terms of the phosphorylated monomers

p and ⇢p.

dp

dt
= ⌘K

1X

n=1

nK � ⌘P
p(P + P̃ )

d⇢p

dt
= ⌘K⇢

1X

n=1

⇢nK � ⌘P⇢⇢
p(P + P̃ )

(S10)



where K and P are as defined in Eqn. 9. Writing these equations in terms of k = 2(tot �

p)/kd and p = 2(⇢tot � ⇢p)/kd⇢, we arrive at Eqn. 9.



S3 Robustness analysis

Here we describe the robustness of oscillations to errors in parameter estimation. For example,

while we may design experiments towards a particular value of each parameter, will oscilla-

tions disappear if our estimates of the parameters are slightly inaccurate? In order to address

this question, we performed case studies of a random and arbitrarily chosen parameter set for

both the bounded and unbounded self-assembly systems (Figs. S2 and S3, respectively). In

particular, we used the first parameter set found using random sampling to yield oscillations.

We then varied the parameters one by one, keeping all other parameters fixed, and measured the

effects of these parameter variations on the presence and period of oscillations. Yellow points

represent values of the parameter for which the system does not exhibit sustained oscillations;

blue curves represent how the period of oscillation changes as a result of parameter variation.

For the bounded self-assembly system, we find that with the exception of the concentrations

tot and ⇢tot, oscillations are robust to even an order-of-magnitude error in parameter estimation.

In addition, oscillations are robust to approximately 5-fold errors in tot or ⇢tot. We also find

that arbitrarily small values of P̃ can yield oscillations. Finally, as expected from the main text

discussion, variations in ku most strongly affect the periods of resulting oscillations. We verify

that are results are not dependent on the small values of ku and ku⇢ in the randomly chosen

parameter set, by performing the same analysis on a second random parameter set (Fig. S2b).

For the unbounded self-assembly system, we find that oscillations are less robust to pa-

rameter variation in two random and arbitrarily chosen parameter sets. One exception is the

parameter kd which was found in the second parameter set to be variable by nearly two orders

of magnitude in the oscillatory regime. Our results suggest oscillations may be more robust in

the bounded self-assembly system than in the unbounded system.



Figure S2: Robustness analysis for bounded self-assembly system in the limit of fast enzy-
matic activity compared to self-assembly. We consider the robustness of oscillations found
for Eqn. 1. Yellow points represent values of the parameter for which the system does not
exhibit sustained oscillations; blue curves represent how the period of oscillation changes as a
result of parameter variation. Panel a uses the first oscillatory parameter set found. In order to
verify that robustness of oscillations is not due to small values of ku and ku⇢, panel b uses the
first oscillatory parameter set found for which those values were both greater than 1 s�1. In both
parameter sets, oscillations are robust to over an order-of-magnitude variation in all parameters
other than tot and ⇢tot. All x-axes are in log-scale except for those two parameters. Arbitrarily
small values of P̃ also give oscillations in both parameter sets. Finally, the period is heavily
affected by ku as described in the main text.



Figure S3: Robustness analysis for unbounded self-assembly system. We consider the ro-
bustness of oscillations found for Eqn. 9. Yellow points represent values of the parameter for
which the system does not exhibit sustained oscillations; blue curve represents how the period
of oscillation changes as a result of parameter variation. Panels a and b use the first two oscil-
latory parameter sets found. Oscillations appear less robust to parameter variations than in the
bounded self-assembly system (Fig. S2), with the exception of the parameter kd in the second
parameter set which can vary by nearly two orders of magnitude in the oscillatory regime. In
addition, as in Fig. S2, arbitrarily small values of P̃ also give oscillations in both parameter
sets.



S4 Considering the limit of fast self-assembly compared to
enzymatic activity in the bounded self-assembly system

In the bounded self-assembly system, the limit corresponding to fast self-assembly compared

to phosphorylation/dephosphorylation corresponds to the assumption

kb
n = kuK

kb⇢⇢
m = ku⇢P

(S11)

Using this assumption, we can describe the system dynamics using a set of two coupled

differential equations. Defining kd = ku/kb, and similarly for ⇢

d

dt
= �⌘K

n+1

kd
+ ⌘P

✓
tot � � n

n

kd

◆✓
⇢m

kd⇢
+ P̃

◆

d⇢

dt
= �⌘K⇢⇢

n

kd
+ ⌘P⇢

✓
⇢tot � ⇢�m

⇢m

kd⇢

◆✓
⇢m

kd⇢
+ P̃

◆
.

(S12)

Our goal is to determine whether this system can give rise to oscillations. Oscillations neces-

sitate positive real parts of the Jacobian of the system evaluated at the fixed point, corresponding

to positive values of its trace. The trace of the Jacobian is given by

tr(J) =
@̇

@
+

@⇢̇

@⇢

=� ⌘K(n+ 1)
n

kd
� ⌘P

✓
⇢m

kd⇢
+ P̃

◆✓
n2

n�1

kd
+ 1

◆

� ⌘K⇢
n

kd
� ⌘P⇢

 
(m+ 1)

⇢m

kd⇢
+ P̃ +

2

⇢

✓
m⇢m

kd⇢

◆2

+m2⇢
m�1

kd⇢
P̃ �m

⇢m�1

kd⇢
⇢tot

!
.

(S13)

where here and in the rest of the section, all concentrations are measured at the fixed point of

Eqn. S12.

All terms in the trace are negative except for the last. Therefore, the system has the potential

to oscillate only if the final term is larger in magnitude than all the rest combined.



To simplify, we notice that given our experimental constraints that ⌘K = ⌘K⇢ and ⌘P =

⌘P⇢, the following holds at the fixed point of Eqn. S12:

⌘K⇢

⌘P⇢

K

P + P̃
=

p


=

⇢p

⇢
. (S14)

Using these equalities and substituting in Eqn. S11 as well as the conservation law ⇢tot =

⇢p + ⇢+mP , we find after some algebra that

tr(J) = �⌘K⇢K

✓
�m

P

P + P̃
+ 2 + n+ n2K

p
+ 2



p
+m2 P

⇢p

◆
. (S15)

In this form, it is clear that oscillations are not possible if m < n + 3. Oscillations are also

not possible if the fixed point concentration of self-assembled phosphatase is not much larger

than the concentration of constitutive phosphatase. However, this equation does not rule out

oscillations for large values of m. We proceed by searching for oscillations numerically.

As in our other numerical studies in this work, we logarithmically sample random parame-

ters. However, here, we also allow m to vary, as a randomly (uniformly) chosen integer between

5 and 20, while maintaining n = 2. We set the total concentrations of monomers to be between

10�4 and 100 µM and allow P̃ to vary between 10�6/m µM and ⇢tot/10m. For this numerical

study, we rescale time by a factor of ⌘K⇢ ⇥ µM. We choose values of kd between 10�5 and 105

µMm�1. We integrate each parameter set up to time 105 in rescaled time units; we found that

100 random parameter sets all reached steady state within a tenth of that time.

We examined 2 ⇥ 106 parameter sets randomly sampled in this fashion, and found 10 sets

yielding oscillations for Eqn. S12. For comparison, we found 1717 out of 5⇥104 parameter sets

yielding oscillations for Eqn. 1. The parameter sets yielding oscillations are given in Table S1.

All oscillation periods found were far from 104, demonstrating that our integration time limit

did not play a role in limiting oscillations found. The oscillating parameter sets found require

extremely large values of m, beyond what is currently readily accessible experimentally. We



Index n m ⌘ kd (µM) kd⇢ (µMm�1) tot (µM) ⇢tot (µM) P̃ (µM) Period
1 2 14 1.1 41.5 201 36.1 9.23 0.0591 5.82
2 2 12 1.1 68.8 0.0235 42.8 4.80 0.0309 17.0
3 2 17 1.1 979 11800 58.7 6.94 0.0322 12.8
4 2 15 1.1 399 0.00540 56.7 3.82 0.0193 40.3
5 2 9 1.1 124 5.15 96.3 9.11 0.0391 18.4
6 2 10 1.1 21.6 3.89e-5 50.5 3.75 0.0292 5.50
7 2 10 1.1 1090 2.60e-5 49.9 1.37 0.00710 56.8
8 2 20 1.1 26.4 0.434 56.5 10.6 0.0516 4.3
9 2 14 1.1 626 4.99e-4 32.7 2.20 0.0104 85.9
10 2 9 1.1 36.6 0.00308 85.6 5.92 0.0315 6.05

Table S1: Parameter sets found to yield oscillations in Eqn. S12, of 2 ⇥ 106 examined. The
period is measured in the rescaled time units described in the main text.

analyze the robustness of the oscillations to one-dimensional variations in parameters in Fig. S4.

Given the relative paucity of oscillating solutions found by random sampling and their apparent

relative fragility (compared to Fig. S2) as well as the technical difficulties associated with

implementing these solutions in the lab (in particular, with achieving robust homomultimeric

self-assembly with large numbers of monomers per multimer), the limit of fast self-assembly

compared to enzymatic activity appears less promising than the opposite limit considered in the

main text of this work.

We do not consider here hybrid systems where the kinase self-assembly is bounded while

the phosphatase is unbounded (or vice versa) though this analysis suggests that in the limit of

fast self-assembly, such systems may be worth examining in greater detail.



Figure S4: Robustness analysis for bounded self-assembly system in the limit of fast self-
assembly. In panel a we perform robustness analysis as in Figs. S2 and S3 using the first
parameter set found yielding oscillations (top row of Table S1). We find that after a threshold
at m = 11, larger values of m do not appear to preclude oscillations, and oscillation period
appears to plateau for large values of m. Oscillations appear most robust to variations in kd⇢,
which can vary by a factor of ⇠ 2 in the oscillatory regime. In contrast, all other parameters can
vary only by a fraction of their value while maintaining oscillations. In panel b we verify simi-
lar features in the robustness plot of another randomly and arbitrarily chosen parameter set (the
first oscillation found in the second 106 parameters screened; sixth row of Table S1); the one
significant difference found was that in that parameter set, only m = 10 yielded oscillations.
These results should be compared to Fig. S2 which show that in the separation-of-timescales
limit explored in the main text, oscillations are far more robust: all non-concentration param-
eters can vary by over an order of magnitude in the oscillatory regime. The relative fragility
of oscillations shown in this figure also helps explain the relative paucity of oscillations found
using random sampling.



S5 Numerical search for oscillations

In order to determine if a parameter set leads to oscillations, we numerically integrated the dif-

ferential equations. For bounded self-assembly, we used initial conditions of (K,P ) = (0, 0),

and for unbounded, (k, p) = (2 tot
kd

, 2 ⇢tot
kd⇢

). We integrated up to a time determined by the in-

verse of the minimum timescale in the system. For bounded self-assembly, we integrated

up to a time tmax = 103/min
�
ku, ku⇢, kb

n�1
tot , kb⇢⇢

m�1
tot
�
, while for unbounded, we used

tmax = 107/min (⌘Ktot, ⌘K⇢tot, ⌘P⇢tot, ⌘P⇢⇢tot). For the full system of equations for bounded

self-assembly, we used initial conditions corresponding to fully unphosphorylated and unbound

, ⇢, and P̃ , and integrated up to

tmax = 104/min
⇣
ku, ku⇢, kb

n�1
tot , kb⇢⇢

m�1
tot , kcK, kcP, kcK⇢, kcP⇢, kbKtot, kbPP̃tot

⌘
.

We set the enzyme dissociation constants kuK, kuP, kuK⇢, kuP equal to their respective cat-

alytic rate constants, since the former are largely unspecified by constraints on binding rates

and Michaelis constants. Our results are largely insensitive to this assumption. In all cases,

the prefactors for tmax were determined by applying an order of magnitude larger prefactor and

finding no new oscillating solutions.

To determine if the results of the numerical integration can be labeled as oscillations, we

used a set of heuristics. We verified these heuristics by plotting solutions found by them to

produce oscillations and finding no evidence of false positives. These heuristics considered the

behavior of a single system component (e.g. K for bounded self-assembly). First, we deter-

mined whether the number of inflection points in the solution is greater than 10. Second, to

weed out decaying oscillations, whether the smallest amount by which the component changed

between inflection points and the amount it changed between an arbitrarily chosen set of inflec-

tion points (between the fifth and sixth) is within 2⇥. Also to weed out decaying oscillations,

we measured the amount the component changed between a set of inflection points around the



3tmax/4 mark–let’s call this amount x3/4–and between the penultimate and final inflection point,

x1. We verified that |(x3/4 � x1)/x1| < 1, meaning that the relative change in oscillating height

was no more than 100%. We also considered whether the solver required sampling points at a

significant frequency (to weed out numerical oscillations): we used the criterion that the third-

to-last sampled time point was within 5% of the second-to-last sampled time point. To further

root out spurious numerical oscillations we measured the period of the oscillation in two ways–

as the time between the third-to-last and last inflection point, and as between the fifth-to-last

and third-to-last–and verified that they differed by no more than 1% (parameter sets that fail

the equal-period test were integrated for 10⇥ longer and re-tested). Finally, we examined the

numerical solution by eye for all parameter sets found to produce oscillations, in order to verify

that even if our heuristics produce false negatives (of which we have found almost no evidence)

our results contain no false positives.



S6 Supplementary figures

Figure S5: Example trajectories. Trajectories displayed in Figs. 2 and 4b are shown along
with the parameters used for each trajectory. For trajectories showing sustained oscillations (all
but the lower left, which shows a decaying oscillation, and therefore not a desired trajectory
) one oscillation cycle is shown.



Figure S6: Verifying Eqn. 4. Here we plot the parameter sets shown in Fig. 3b in the same
phase diagram as that figure, but colorcoded by the normalized steady-state concentration of
phosphatase multimer, found using Python’s scipy.optimize.root function. In particular, color-
coding is given by the left-hand-side of Eqn. 4. Thus, for each parameter set, we show the fixed
point concentration of the phosphatase multimer, normalized by the constitutive phosphatase
concentration and by a function of the unbinding rates of kinase and phosphatase multimers.
The results of this figure demonstrate the validity of our analytical analysis. For large values
of �, the absolute value of normalized P ? is large; meanwhile, the sign of the normalized P ?

is positive for ⌫ > 1 and negative otherwise. Since oscillations require the normalized value of
P ? to be greater than unity, oscillations are restricted to the upper right quadrant of the phase
diagram.



Figure S7: Oscillation periods. a: Numerical integration of Eqn. 1 demonstrates Eqn. 6
correctly predicts the frequency of oscillations for the bounded self-assembly system in the
linear regime around the fixed point, but is not predictive outside this regime. We make no
constraints on the fixed points of the parameter sets considered here. The x-axis shows the pre-
dicted squared frequency while the y-axis shows the true squared frequency. For !2

pred > 0, the
two formulae agree (black dashed line represents !2 = !2

pred). For !2
pred < 0, !2

pred is no longer
predictive since the oscillations cannot be understood through linear stability analysis of the
fixed point. b: Random parameters logarithmically distributed within the experimental regime
were sampled for Eqns. 1 (bounded self-assembly; blue) and 9 (unbounded self-assembly;
orange). The periods of resulting oscillations are histogrammed logarithmically, showing a
possible range of periods spanning orders of magnitude, from fractions of a second (minute) for
bounded (unbounded) self-assembly, to > 1 day.



Figure S8: Amplitude analysis for bounded self-assembly system. Various experimental
tools can be used to visualize the system oscillations. As just two examples, a fluorophore-
quencher pair on complementary monomers can enable the visualization of oscillations in
monomer concentration, while split fluorophores can enable the visualization of multimer con-
centrations. Here we numerically integrate oscillating parameter sets found for Eqn. 1, and
histogram the amplitude of oscillations of various system components. We define the amplitude
here as the maximum concentration divided by the minimum concentration across an oscilla-
tory cycle. We perform this analysis for kinase and phosphatase multimers, unphosphorylated
monomers, and phosphorylated monomers. Our results show that typical oscillations involve
variation of many orders of magnitude in the concentrations of phosphatase multimers, as well
as unphosphorylated kinase and phosphatase monomers. However, these results suggest oscil-
lations cannot be readily visualized using only the concentrations of phosphorylated monomers.

Figure S9: Amplitude analysis for unbounded self-assembly system. Analysis performed
as in Fig. S8. Our results suggest that oscillations in the concentrations of phosphatase mul-
timers and unphosphorylated monomers should be most readily visible, as they typically vary
by several orders of magnitude over an oscillation cycle. Concentrations of kinase multimers
and unphosphorylated monomers also typically vary by at least an order of magnitude over an
oscillation cycle. Concentrations of phosphorylated monomers typically do not vary by much.



Figure S10: Amplitudes of bounded self-assembly system oscillations are larger farther
from the bifurcation threshold. Analysis performed as in Fig. S8. Here we show the oscil-
lating parameter sets in �-⌫ space, colorcoded by the fold-change in concentration of P , K, ⇢,
or  over an oscillatory cycle. Our results demonstrate that parameter sets farther from either
bifurcation point (� = 1 or ⌫ = 1) typically result in higher amplitudes of oscillations.
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