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ABSTRACT The accurate prediction of RNA secondary structure from primary sequence has had enormous impact on
research from the past 40 years. Although many algorithms are available to make these predictions, the inclusion of non-nested
loops, termed pseudoknots, still poses challenges arising from two main factors: 1) no physical model exists to estimate the loop
entropies of complex intramolecular pseudoknots, and 2) their NP-complete enumeration has impeded their study. Here, we
address both challenges. First, we develop a polymer physics model that can address arbitrarily complex pseudoknots using
only two parameters corresponding to concrete physical quantities—over an order of magnitude fewer than the sparsest
state-of-the-art phenomenological methods. Second, by coupling this model to exhaustive enumeration of the set of possible
structures, we compute the entire free energy landscape of secondary structures resulting from a primary RNA sequence.
We demonstrate that for RNA structures of �80 nucleotides, with minimal heuristics, the complete enumeration of possible sec-
ondary structures can be accomplished quickly despite the NP-complete nature of the problem.We further show that despite our
loop entropy model’s parametric sparsity, it performs better than or on par with previously published methods in predicting both
pseudoknotted and non-pseudoknotted structures on a benchmark data set of RNA structures of%80 nucleotides. We suggest
ways in which the accuracy of the model can be further improved.
SIGNIFICANCE The functions and properties of RNA molecules are closely tied to the set of structures they can fold into
and their free energies. However, complex structures termed pseudoknots are not well predicted by current tools despite
their prevalence. Here, we describe a method to analytically calculate the entropies of arbitrarily complex pseudoknots
using only two parameters corresponding to concrete physical quantities. This approach represents an order-of-magnitude
reduction in parameters compared to even the sparsest state-of-the-art tools. We employ this method alongside an
exhaustive enumeration of the set of possible structures to predict the entire free energy landscape of short RNA
molecules, given their sequence. Finally, we show that despite its parametric sparsity, our algorithm outperforms current
state-of-the-art methods in pseudoknot prediction.
INTRODUCTION

RNA molecules play physiological roles that extend far
beyond translation. In human cells, most RNA molecules
are not translated (1). Noncoding RNAs interact function-
ally with messenger RNA (2), DNA (3), and proteins (4)
and can be as large as thousands of nucleotides (nts) (5,6).
However, a substantial fraction are <40 nts in length,
including microRNAs and small interfering RNAs, which
serve as regulators for the translation of messenger RNA
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(2,7), and piwi-interacting RNAs, which form RNA-protein
complexes to regulate the germlines of mammals (8). The
in vitro evolution of RNA, especially through systematic
evolution of ligands by exponential enrichment (9–11),
has led to an explosion of applications for short RNA mol-
ecules because of their ability to tightly and specifically bind
to a remarkable range of target ligands (12).

Overwhelmingly, the properties of short noncoding RNA
molecules are tied to their structures (13–15). Such struc-
tures are formed because of the energetic favorability of
bonds between complementary nts (primarily A to U, C to
G, and the wobble pair G to U). However, these bonds
impose an entropic cost. Therefore, the conformations
most frequently adopted balance the energetic gain of
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maximal basepairing with the entropic cost of structural
constraints. In equilibrium, the RNA adopts each possible
structure with Boltzmann weighted probabilities.

Because of the relevance of RNA structure to function
(16,17), current research aims to predict the minimum free
energy (MFE) structures given the sequence. Algorithms
typically predict ‘‘secondary structure,’’ a list of the base-
pairings (18,19). The early Pipas-McMahon RNA structure
prediction algorithm sought to completely enumerate and
evaluate the free energy of all possible secondary structures,
thereby constructing the entire energy landscape (20). More
recent algorithms have made progress in making similar
enumerations less computationally intensive (21), the most
successful of which are the TT2NE algorithm and its sto-
chastic version, McGenus (22,23). The complete landscape
enumeration approach including all secondary structures
has so far been limited to short (<30 nt) RNA molecules
(24,25), and the field has instead almost entirely been domi-
nated by dynamic programming approaches (26–30). Such
algorithms efficiently consider an enormous number of
structures without explicitly generating them by iteratively
finding the optimal structure for subsequences (18).

Despite the substantial success of dynamic programming,
these algorithms have difficulty predicting RNA secondary
structures that include pseudoknots (i.e., structural elements
with at least two non-nested basepairs) (see Fig. S1 A for an
example) that make up roughly 1.4% of basepairs (18) and
are overrepresented in functionally important regions of
RNA (31). Pseudoknots are disallowed from the most pop-
ular RNA structure prediction algorithms (32,33) because
of computational cost; indeed, enumerating all pseudoknot-
ted structures a given RNA molecule can fold into has been
shown to be NP-complete (34–36). Significant advances
have been made with heuristics, which do not guarantee
finding the MFE structure (23,37–43), and by disallowing
all but a limited class of pseudoknots (44–51).

A further major challenge for predicting pseudoknotted
structures is the relative lack of experimental data or physical
models to estimate their entropies (52,53). An important
caveat is the simple ‘‘H-type’’ pseudoknot for which
both experimental data (54–57) and physical models
(37,50,51,58–60) are available. However, for more complex
single-molecule pseudoknots, even those which can be
enumerated by current dynamic programming algorithms
(47), entropy estimates have been limited to phenomenolog-
ical extensions of the non-pseudoknotted and H-type pseudo-
knot models (43,44,61), and few experimental studies are
available (62). A recent strategy uses machine learning of
large experimental data sets (50,63); although these ap-
proaches can be useful, they come with the disadvantages
of compounding possible experimental errors and often using
an enormous number of parameters, which can impact gener-
alizability. A sketch of a theoretical description of simple
pseudoknot entropies based on polymer physics was devel-
oped by Isambert and Siggia (37,60); however, their deriva-
tions have not been published. Given the relative lack of
experimental data to validate current simple phenomenolog-
ical approaches on complex pseudoknots, the lack of a phys-
ical model for such structures is a pressing concern.

In this study, we develop a physical model to calculate the
entropies of arbitrarily complex pseudoknots. We combine
our model with complete enumeration of the secondary
structure landscape, demonstrating that we can exactly solve
for the probabilities of the RNA folding into each of the
possible structures, including those with pseudoknots
(Fig. 1). We demonstrate that this approach is feasible, not
only for short RNA molecules of �25 nts that have been
examined in previous studies (25) but even for biologically
relevant RNA sequences of �80 nts in length.

Our approach combines a method based on the work of
Isambert and Siggia with a, to our knowledge, novel
graph-theoretical depiction of the RNA, allowing us to
calculate the entropy of any arbitrary RNA structure. We
demonstrate the generality of our formalism using the
H-type and kissing hairpin pseudoknots as examples.
Despite this generality, our loop entropy model uses only
two parameters corresponding to experimentally derived
physical quantities: the persistence length of single-stranded
RNA, and the volumewithin which two RNA nts are consid-
ered bound. This represents an enormous parameter reduc-
tion compared to state-of-the-art algorithms; for example,
the phenomenological Dirks-Pierce model has 11 parame-
ters for the loop entropy of pseudoknots and�18 parameters
for non-pseudoknotted loops (63).

We test our model predictions on molecules from the RNA
STRAND (64), PseudoBaseþþ (65), and CompaRNA (66)
databases and find good agreement with experimental results.
We find that a significant heterogeneity in pseudoknot types
exists even for sequences %80 nts in length, based on the
polymer model representing their entropies. This heterogene-
ity is found to result in systematic errors of heuristic models’
estimates of the entropies of complex pseudoknots, moti-
vating the generality of the entropic model derived here,
which can correct such errors. Although we fit our entropy
model only to data from non-pseudoknotted structures, we
find that our model performs as well or better than previously
published methods in predicting pseudoknots while perform-
ing on par with current methods in the prediction of non-
pseudoknotted structures. Given the success of the model
alongside its parametric sparsity, future work should build
upon it to include further biological considerations neglected
in the current treatment, and we give suggestions for where
such improvements can be made.
METHODS

Calculating free energies

The probability of the RNA sequence folding into a given equilibrium struc-

ture s is given by the Boltzmann factor:
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FIGURE 1 Schematic overview of the algorithm. Given an RNA sequence, the algorithm first enumerates all potential stems (sequences of consecutive base-

pairs) that can form. It then searches for all possible combinations of stems such that no nt is paired with more than one other, thus forming all possible secondary

structures. For each structure, it calculates the free energy, which is comprised of a bond free energy term and a loop entropy term. In this work, we describe a

polymer physics model to calculate this loop entropy term for arbitrarily complex pseudoknotted structures using only two parameters. The histogram of free

energies for the sequence shown is plotted with an arrow pointing to the minimum free energy (MFE). Given the entire free energy landscape, the algorithm

calculates the probability of any arbitrary secondary structure of forming in equilibrium. Finally, we coarse grain over similar structures described by the

same topology, arriving at a probability distribution for every possible topology forming in equilibrium. To see this figure in color, go online.
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pðsÞ ¼ expð�bGsÞ=Z; (1)

where b¼ 1/kBT (T is the temperature, and kB is Boltzmann’s constant), and

the partition function, Z, is defined such that the probability distribution isP

normalized:

s

pðsÞ ¼ 1. Here Gs, the Gibbs free energy of structure s, is a

function of the enthalpy Hs and entropy Ss of the structure:

DGo ¼ DHo � TDSo; (2)

where we drop the subscripts for notational convenience and introduce D to

signify that free energies are measured with respect to the free chain. The
superscripts implying standard conditions will be dropped from here on.

We separate the free energy calculation into two independent compo-

nents: the free energy of consecutive basepairs (stems) and the free energy

of loops. We make the simplifying assumption thatDH is determined solely

by the basepairs in the structure, ignoring higher order corrections, such that

DH ¼ DHstems. For the entropy, we make no such assumption, and DS ¼
DSstems þ DSloops, where the entropy of stems represents the entropy lost

by basepaired nts, and the entropy of loops represents the entropy lost by

the constraints those basepairs place on the rest of the molecule. To calcu-

late the terms DHstems and DSstems, we consider nearest-neighbor interac-

tions among basepairs following the Nearest Neighbor Database (67),

assuming (with few exceptions tabulated in the database) independence

of the free energy contributions of each stem. See further details in Support-

ing Materials and Methods.
Calculating loop entropies

The goal of this and the next section is to build up a theoretical framework

to estimate the loop entropies of arbitrarily complex RNA pseudoknots.

This calculation has a significant effect on the prediction results. In fact,

the magnitude of the loop entropy is on average equal to that of the overall

free energy at physiological temperatures (see Fig. S7). This is as expected

intuitively; the difficulty in RNA structure prediction lies precisely in pre-
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dicting the balance between the energy gain from basepair constraints and

the entropy gain from unpaired nts.

Because the following calculation is somewhat involved, we will begin

by clarifying explicitly the nature of the loop entropy. A free RNA chain

has a large number of conformations available to it, which we will call

U. The loop entropy is the quantification of the reduction in conformations

available to the RNA molecule upon introducing constraints on the struc-

ture, such as that certain nts are paired (68).

U depends on the length x of the RNA, such thatU(x1)U(x2)¼ U(x1þ x2);

in other words, we assume (for the free chain) independence of the various

subsections of the RNA. This is in principle only true in the limit x1,

x2 [ b, where b z 2.4 nts is the Kuhn length of single-stranded RNA,

and further neglects self-avoidance of the RNA molecule. Throughout, we

will consider regions of single-stranded RNA long enough such that x[ b

but short enough such that we assume self-avoidance has negligible probabil-

ity. We discuss how to systematically consider shorter RNA loops in Support-

ing Materials and Methods and will make some notes regarding self-

avoidance later in this section. We will also make the approximation that U

is independent of sequence.

When a loop is formed in RNA, that loop constrains the number of con-

formations available to the RNA. For example, an RNA molecule that has

its first nts bonded to its last only has available to it a fraction of the con-

formations available to the free chain—namely, all those that have the first

and last nts close enough to bind. We are interested not in absolute values of

the entropy S, but in DS, where the free chain is our reference state with

DSfreeloops ¼ 0. The entropy of a structured RNA of length x with ustruct con-

formations available to it is given by DSloops ¼ kBlog(ustruct/U(x)) < 0,

where we have written the difference of logs as the log of the ratio. We

can simplify this formula by writing ustruct ¼ U(x) � p, where p is the frac-

tion of conformations available to the free chain that are consistent with the

structure being considered. We therefore have

DSloops ¼ kB log p: (3)
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It is worth reiterating that the entropy of stems themselves was already

taken into account in the term DSstems and that DSloops only measures the

entropy lost because of loop closures (69). To avoid overcounting the en-

tropy lost because of the constraints placed on basepaired nts, stems do

not directly contribute toDSloops. Therefore, a stem comprised of l basepairs

(or 2l nts) should be treated—for the purposes of the DSloops calculation—

as if it has U(2l) available conformations; that it in reality has far fewer has

already been quantitatively accounted for in the DSstems term. Because of

this, factors of U cancel out entirely in calculations of DSloops.

We now turn to polymer physics to quantitatively describe how loop

closure constraints affect p, the fraction of configurational space available

to the molecule.We model a single-stranded region comprised of x unpaired

nts as a random walk of (xþ 1)/b steps, whereas before b is the Kuhn length

of single-stranded RNA. We denote by Psð~RÞd~R the probability of a random

walk of length s to have end-to-end vector ~R:

Ps

�
~R
� ¼

�
3

2psb

�3=2

exp

�
� 3R2

2sb

�
: (4)

We have assumed s[ b to arrive at the Gaussian formula above through

the central limit theorem. The mean of the Gaussian is zero by symmetry.

To find the variance we first consider a single step of length b in three di-

mensions, which has variance in thebi, bj, and bk coordinates of b2/3 by sym-

metry. For a random walk of N ¼ s/b steps, by independence of subsequent

steps, the total variance is equal to Nb2/3 ¼ sb/3, leading to Eq. 4.

Eq. 4 is accurate for non-self-avoiding random walks; self-avoiding

random walks cannot be treated analytically in this way. However, for suf-

ficiently short walks, the probability of self-interaction is low. As described

in Supporting Materials and Methods, we can systematically consider

higher order corrections to Eq. 4 while maintaining its Gaussian nature.

Whereas the accuracy of the assumption s[ b does not always hold in

the problems considered, we ultimately find very good agreement between

results using Eq. 4 and experiment and that corrections to Eq. 4 as described

in Supporting Materials and Methods, are negligible.

For a structure with n single-stranded regions of lengths si (1 % i % n),

the fraction of conformations consistent with the structure is given by the

following:

p ¼
Z Y

i

Psi

�
~Ri

�
d~Ri; (5)

where ~Ri is the end-to-end distance vector of the ith single-stranded region,

and the primed integral is taken only over those ~Ri consistent with the over-
FIGURE 2 vs estimated from experimental data. Experimental estimates

for the free energy of hairpin loops of length s from Table 1 of (71) were

converted to entropy estimates (blue points and error bars) by assuming

DH ¼ 0 as in (30). These data were fit to Eq. 6, yielding an estimate of

vs ¼ 0.0201 5 0.0036 nts3. To see this figure in color, go online.
all structure. We will describe how to address these integrals via a Feynman

diagram-like approach in the next section.

To demonstrate how Eqs. 3, 4, and 5 are applied, we first consider the

simple hairpin loop. We will call its entropy DSclosed-net-0, neglecting

the subscript of ‘‘loops’’ from here on. The notation follows (37,60), and

the subscript references the number of stems enclosed by the loop (zero

in this case; see Fig. S2 for other examples). Following Jacobson and Stock-

mayer (70), we allow that basepairing can occur as long as the two nts are

within a small volume vs of one another. We assume that the bond length rs

is small enough that for all
��~R ��%rs, Psð~RÞzPsð~0Þ. Therefore, p ¼

vsPsð~0Þ, and Eqs. 3, 4, and 5 yield

DSclosed�net�0 ¼ kB

	
logðvsÞ þ 3

2
log

�
3

2psb

�

: (6)

We emphasize that within our model, this formula is applicable to hairpin

loops, bulge loops, internal loops, and multiloops. We discuss in a later sec-

tion how our model can be extended to break this equivalency.

We estimate vs by fitting experimental measurements of the entropy of

hairpin loops of variable lengths to Eq. 6. Although Eq. 6 implies that

the entropy of a hairpin should increase monotonically as a function of
its length, the experimental measurements are nonmonotonic, and their

nonmonotonicity exceeds the error bars (71). This nonmonotonicity may

be due to enthalpic effects (72), which were neglected in our analysis

following (30). Nevertheless, Fig. 2 shows that Eq. 6 gives a reasonable

fit to the experimental data with vs¼ 0.02015 0.0036 nts3. A more precise

definition of vs might include a dependence on the closing basepairs of the

hairpin loop; we expect that the penalties placed on specific closing base-

pairs and first mismatches in (30,71) play a similar role, though such pen-

alties were not included here. If one ignores all angular dependences of

bond formation, our estimate of vs leads to a naive underestimate of the

length of a hydrogen bond of 0.56 Å, which nonetheless is well within an

order of magnitude of the true length of hydrogen bonds.

Because we find b using previous experimental results and fit vs based on

data from non-pseudoknotted structures, our model is in truth a zero-param-

eter model when it comes to pseudoknots. No data from pseudoknotted

structures were used to fit our model.
Pseudoknot loop entropies: RNA Feynman
diagrams

Our goal in this section is to find Eq. 5 for arbitrary pseudoknots. In Eq. 5,

the Ps(R) terms are given by the single-stranded segments, whereas stems

appear through the constraint on the integral. The persistence length of

double-stranded RNA is extremely long (�200 nts (73)) compared to

both single-stranded RNA and the length of any stem we will actually

consider. Therefore, we will model stems as rigid rods with a fixed end-

to-end distance given by the length of the stem. In other words, a stem in

which nts i through i þ k are bound to j through j � k constrains nts i

and i þ k (as well as j and j � k) to be a fixed distance apart. As we will

see, such constraints end up only affecting the value of the integral for pseu-

doknotted structures, as exemplified by Fig. 3 c.

To calculate the entropy of a pseudoknot of arbitrary complexity, we invent

a, to our knowledge, novel graph formulation inspired by Feynman diagrams

from quantum field theory. We build on previous work by Rivas and Eddy

(44) and later by Orland and Zee (74) who developed innovative graphical

decomposition methods for RNA structures for the purposes of pseudoknot

enumeration; here, we use a related diagrammatic approach for the entropy

calculation instead. First, the RNA structure being considered is translated

into a graph. Nodes are used to represent the two end points of a stem, and

two types of edges represent single- and double-stranded RNA.

Defined in this way, the graph of the RNA structure directly represents

the integrals necessary to compute its entropy. The positions of the nodes,
Biophysical Journal 117, 520–532, August 6, 2019 523
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FIGURE 3 RNA Feynman diagrams. (a) An instance of the canonical H-type pseudoknot is shown (the first panel). Bold lines represent the RNA back-

bone; thin lines represent hydrogen bonds. The loop entropy of this structure can be calculated by first assuming sequence independence of the loop entropy

(second panel) and then converting the structure to a graph (third panel). The nodes of the graph represent the first and last basepairs of each stem, and two

types of edges represent single- and double-stranded RNA. The graph directly represents the integral in Eq. 7, reprinted in the fourth panel. The nodes are

integrated over three-dimensional space, subject to constraints specified by the rigid double-stranded edges (blue), which correspond to delta functions. The

integrand is given by the flexible single-stranded edges (red), which correspond to a PsðR!Þ term. (b) The intramolecular kissing hairpin pseudoknot (first

panel) is converted to a graph (second panel), representing the integrals necessary to compute its loop entropy (third panel). Although for this structure, the

integrals are in general not analytically solvable, we numerically solve them (see SupportingMaterials andMethods) as well as solve them analytically for the

case s1/s3 ¼ s2/s4 (Eq. 8). (c) The process of calculating the loop entropy of an RNA structure by converting it to a graph representing the entropy in integral

form can be applied to any arbitrary structure. Separable integrals are represented by graphs which can be disconnected by the removal of any one edge. Thus,

once appropriate factors of vs are included (one for each stem in the original structure), the loop entropy of the example structure in question is simple to

calculate and is given by four closed-nets-0 (originating from the three hairpins and multiloop). The four closed-net-0 loops contribute multiplicatively to the

exponential of the loop entropy, meaning additively to the loop entropy itself. For non-pseudoknotted structures, all double-stranded edges (blue) can be

removed in this way. To see this figure in color, go online.

Kimchi et al.
~ri, are integrated over all of space, while the constraints of the structure are

included in the integrand: a double-stranded edge of length l between nodes

i and j leads to a term vsdð
��~ri �~rjj�lÞ=4pl2 (because of the rigid rod

approximation of the stem), and a single-stranded edge of length s between

these nodes leads to a term Psð~ri �~rjÞ in the integrand (as in Eq. 5). Note

that two bonded nts in isolation are considered a stem of length l / 0.

As a concrete example, we consider the canonical H-type pseudoknot, an

instance of which is shown in Fig. 3 a (first panel). The loop entropy is

sequence independent (second panel) and can be calculated by translating

the structure into a graph (third panel) in which each node represents the

edge of a stem, blue edges represent regions of double-stranded RNA of

length li, and red edges represent regions of single-stranded RNA of length

si. For the example in Fig. 3 a, s3 ¼ 6 nts, and l1 ¼ 3 nts. We set the origin

of our coordinate system to node 0 and call the distance vector between node i

and the origin~ri. Integrating over the possible placements of nodes 1–3 (while

including the constraints of the structure in the integrand as described previ-

ously) we obtain the following Gaussian integral formulation of the entropy:

eDSH�type=kB ¼ v2s

Z
d~r1

Z
d~r2

Z
d~r3

d
����~r1 ��� � l1

�
4pl21

�
d
����~r3 � ~r2

��� � l2

�
4pl22

Ps1

�
~r3 � ~r1

�
� Ps2

�
~r2 � ~r1

�
Ps3

�
~r2

�
;

(7)
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where using the assumption s[ b, we allow the integrals to extend over all

of space. A more comprehensive derivation of this formula, including the

origin of the vs terms, can be found in Supporting Materials and Methods.

This integral can be calculated analytically (Supporting Materials and

Methods; (37)).

A complex pseudoknot involved in biological processes ranging from viral

replication to antisense regulation is the intramolecular kissing hairpin pseu-

doknot (Fig. 3 b; (43,75–79)). Despite its biological prevalence, its entropy

cannot be estimated using existing formalisms, necessitating the use of simple

heuristic energy models (43). Our formalism on the other hand can readily

address this pseudoknot by translating the structure to integrals as in Eq. 7.

Although the integrals representing the entropy of the kissing hairpin are

not in general analytically solvable, they are for the special case of s1/s3 ¼
s2/s4. Rescaling the s to be s/g with g ¼ 3/2b, we define the variables

sc ¼ s5(s1 þ s2)(s3 þ s4) and sd ¼ s1s2(s3 þ s4) þ s3s4(s1 þ s2) along with

sA ¼ s5ðsc þ sdÞ
sc

; sB ¼ s3s4ðs1 þ s2Þ2
sd

; sv ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sc þ sd

p

to arrive at

eDSKH=kB ¼ ðvs=svÞ3
2p9=2

sA
l1l3

e
�
�
l21 þ l23
sA

�
� l2

2

sB
sinh

�
2l1l3
sA

�
; (8)

where sinh is the hyperbolic sin function.
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The complete derivation of Eq. 8, along with a derivation of the numer-

ically solvable general case, can be found in Supporting Materials and

Methods. We have also provided an eight-dimensional table of the results

of the numerical integration for different combinations of the s and l as Sup-

porting Materials and Methods (Table S2).

We note that the intermolecular kissing hairpin complex, for which phys-

ical models have previously been developed (80), is simpler than the intra-

molecular structure in the context of our formalism, and its entropy

calculation is shown in Fig. S2.

Our Feynman diagram-like graphical formalism allows intuitive manip-

ulation of the integrals. Graphs that can be disconnected by the removal of

any one edge correspond to separable integrals and thus to distinct motifs in

the RNA structure. The decomposition of a structure into its component

graphs is depicted in Fig. 3 c for a classical cloverleaf RNA (a second

example, this one of a pseudoknotted RNA, is provided in Supporting Ma-

terials and Methods, Section 10). The RNA in question decomposes into

four instances of closed-net-0 (originating from the three hairpins and mul-

tiloop) and one instance of an open-net-0, or free chain (which by definition

does not affect the entropy). For non-pseudoknotted structures, once appro-

priate factors of vs are included in the integrals (one for each double-

stranded edge of the graph), all double-stranded edges can be removed

through this graphical decomposition process. As shown in the figure, nodes

that can be removed without changing the topology can be removed in the

graph decomposition process. This is made possible by the property of

Psð~rÞ that
R
Pxð~r1ÞPyð~r2 � ~r1Þd~r1 ¼ Pxþyð~r2Þ (see Supporting Materials

and Methods for further discussion).

In Fig. S2, we display all possible graphs of up to two stems and their

respective RNA structures. As in Fig. 3, single-stranded edges are dis-

played with red, and double-stranded are displayed with blue. For

each graph, the integral formulation of its entropy is displayed in the

figure alongside what it evaluates. RNA sequences, even those of length

%80 nts, form a wide array of pseudoknots more complex than those

discussed in that figure, such as H-type pseudoknots with internal loops.

Heuristics for treating such pseudoknots make systematic errors that our

model can correct. See Supporting Materials and Methods for further

discussion.

In Supporting Materials and Methods, we provide a full sample calcula-

tion for the free energy of a pseudoknotted structure.
Comparison of methodology to other
physics-based pseudoknot entropy models

Although our model is able to address arbitrarily complex pseudoknots,

prior physical models have been developed to address H-type pseudoknots

in particular. The parametric sparsity of the model described above neces-

sitates a neglect of several biological considerations, which have been

considered by these previous models. Here, we will discuss how the frame-

work developed above can be modified to include several factors considered

in such models. The rationale for building atop our framework is provided

in the next section. We demonstrate that despite the loop entropy model’s

apparent physical simplicity—it uses an order of magnitude fewer param-

eters than current tools while being general enough to apply to arbitrarily

complex pseudoknots—it performs on par with state-of-the-art prediction

software and therefore appears to succinctly capture the essential physics

at play (see Results and Discussion).

An early model for the loop entropy of pseudoknots was developed by

Gultyaev et al. (81). That model was based in large part on Jacobson and

Stockmayer’s derivation of the loop entropy of hairpins, which is rederived

(Eq. 6) and then significantly extended by our formalism. To account for

excluded volume, Gultyaev et al. replaced the factor of 3/2 in Eq. 4 with

1.75 (82). Such a change does not accurately account for excluded volume

for the case of pseudoknots; we therefore did not make this replacement in

our own article (in an effort for self-consistency), though it can easily be

made. A more systematic treatment of how to include self-avoidance for

the case of complex pseudoknots is still lacking.
The first pseudoknot models such as Gultyaev’s did not consider interhe-

lix loops for the H-type pseudoknot (i.e., they only considered those

structures for which s2 ¼ 1 in the language of Fig. 3 a). The approximation

made in our own work is in fact the opposite limit—that of s2 [ b—and

our results should be most appropriate for long single-stranded regions.

More precise treatment of short loops would forgo the simple ideal chain

approximation of Eq. 4 in favor of the worm-like chain approximation.

Although it would preclude analytic solutions of the integrals, numeric inte-

gration can easily be employed to make an effective look-up table as we

demonstrated for the intramolecular kissing hairpin pseudoknot.

A similar complication is dealt with in Cao and Chen’s Vfoldmodel, which

considers bond geometries explicitly using the diamond lattice (50).

Although the enumeration procedure employed on the lattice is not compu-

tationally feasible for very large or complex pseudoknots, it is expected to

capture the atomistic geometries more precisely than our own continuous

three-dimensional space theory. Modifications can still be made within our

framework, most directly by integrating only over a specific range of angles

determined by the geometry. Such geometric considerations may also affect

our treatment of non-pseudoknotted structures and, in particular, our equiva-

lent treatment of hairpin, internal, bulge, and multiloops (83).

Perhaps most importantly, our model neglects the twists of the RNA helix.

These twists may play a role in the nonmonotonicity of the experimental data

in Fig. 2 and are likely significant. Isambert’s KineFold model claims to

effectively consider such twists by modification of the value of the double-

stranded stem lengths l inputted to the pseudoknot formulae (60); however,

as for the pseudoknot formulae themselves, the derivations of these modifica-

tions have not been published, and no physical basis for them was given.

Finally, although we do not distinguish between the major and minor grooves

of the RNA, accounting for the different grooves can explain asymmetries in

physiological H-type pseudoknots (58). Aalberts and Nandagopal demon-

strated that with the addition of a single experimentally measured parameter,

Psð~RÞ can be modified to account for this factor (84,85).
Enumerating RNA structures

In this section, we describe the process by which we exhaustively enumerate

the secondary structures, including pseudoknots, into which an arbitrary

given sequence can fold. This process was developed by Pipas andMcMahon

(20). The Pipas-McMahon algorithm first enumerates all possible secondary

structures for a given sequence (sans pseudoknots) and then evaluates the free

energy for each to construct the entire free energy landscape for non-pseudo-

knotted structures. A major shortcoming is the significant computer time

required for long sequences. However, the exponential increase in computer

power over the past 40 years, coupled with increased appreciation for the

physiological and engineering relevance of short RNA strands, suggests revis-

iting this approach. This process is also employed by the TT2NE algorithm,

with the caveat that rather than stems, that algorithm uses helipoints—defined

as sets of stems separated by a bulge loop of size one or a 1 � 1 internal

loop—as the backbone of the enumeration procedure, thus coarse graining

over many similar structures (22).

We first number the nts in the RNA sequence from 1 to N from the 50 end.
We define an N � N symmetric matrix B, which describes which nts can

bind to each other: Bi,j ¼ 1 if nts i and j can bind to form a basepair (i.e.,

they belong to the set {(A,U)(C,G)(G,U)}) and 0 otherwise.

Next, we search for all possible stems (strings of consecutive basepairs)

that could form. We define a parameter m to be the minimal allowed stem

length (m R 1; we set m ¼ 1 throughout unless otherwise specified). We

also impose the physical constraint that hairpins (single-stranded region con-

necting one end of a stem) have aminimal length of three nts.We include not

only the longest possible stems that can form but all contiguous subsets of

those stems (86,87). We denote the number of stems found by Nstems.

We next define theNstems�Nstems symmetric compatibilitymatrixC, where

Cp,q ¼ 1 if a structure could be made with both stems p and q acðCq;q ¼
1c qÞ. We impose the constraint that each nt may be paired with, at most,

one other nt by setting Cp,q ¼ 0 if stems p and q share at least one nt.
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Finally, we explicitly enumerate the remaining possible secondary struc-

tures by identifying all compatible combinations of stems. Starting from a

single stem s1, we consider stems s2 where 1 % s1 % s2 % Nstems and add

the first stem for which Cs1,s2 ¼ 1. Then, we repeat the process, adding the

first stem s3 > s2 compatible with both s1 and s2 and so forth, continuing

until we can add no more stems. We add the resulting structure, composed

ofM stems, to the list of possible structures, remove the last stem added (to

obtain the structure composed of stems s1, s2, ., sM–1), and continue the

process. This algorithm returns all possible secondary structures resulting

from the primary sequence.

The algorithm described here was implemented in MATLAB (The

MathWorks, Natick, MA), and all code is available on the GitHub reposi-

tory (https://github.com/ofer-kimchi/RNA-FE-Landscape). The repository

also includes a Python version of the code.

Once we completely enumerate the possible secondary structures, we

calculate the probabilities that the RNAwill fold into each of them by calcu-

lating their free energies as described in the previous sections.
RESULTS AND DISCUSSION

We use experimentally determined structures to compare
the predictions of our model with other current methods; re-
sults are shown in Fig. 4. For sequences of length %80 nts
from the RNA STRAND (64), PseudoBaseþþ (65), and
CompaRNA (66) databases (186 non-pseudoknotted struc-
tures with 58 different topologies; 235 pseudoknotted struc-
tures with 52 different topologies), which had a sequence
dissimilarity R0.2 (using Jukes-Cantor), we measured the
number of basepairs correctly predicted by our algorithm’s
MFE structure compared to 14 other current algorithms.
Seven of these cannot predict pseudoknots and serve as use-
FIGURE 4 Summary statistics for comparison to other prediction tools. To a

predicting experimentally determined RNA structures to that of 14 other current

(119), Mfold (32), CONTRAfold (120), PPfold (121), CentroidFold (122), Cont

parameters), HotKnots (Cao-Chen parameters) (63), ProbKnot (40), PKNOTS (4

sure sensitivity, PPV, the fraction of topologies predicted correctly by the MFE s

and the fraction of MFE structures containing a pseudoknot. We separate the res

not. Error bars show the standard error. Despite the fact that our algorithm requ

structure (at least an order of magnitude–and often several–fewer than the other a

doknotted structures, our algorithm outperforms the other algorithms tested in

dicting non-pseudoknotted structures. We also demonstrate that our algorithm’s

setting all loop entropies to zero (dark green) leads to poor performance (see m
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ful benchmarks for the non-pseudoknotted results (detailed
methods in Supporting Materials and Methods; we have
included the entire benchmark data set in Table S1). We
also tested whether our algorithm’s predictions are depen-
dent on the accuracy of our loop entropy model by setting
all loop entropies to zero (dark green). The poor perfor-
mance of our algorithm in this case compared to the case
in which loop entropies are considered demonstrates the
success of the loop entropy model.

Although the entropy model presented here can give an
integral expression for arbitrarily complex pseudoknots,
the integral may need to be solved numerically for suffi-
ciently complex structures. For this large-scale comparison,
we disallowed pseudoknots more complex than those dis-
played in Fig. S2, and our algorithm therefore did not
require any numerical integration. Fig. S6 demonstrates
that even without this practical constraint, the complete
enumeration of secondary structures including all possible
pseudoknots is nonprohibitive. We similarly disallowed par-
allel stems, which can be stable in neutral and acidic pH
conditions (88). We also set the minimal stem length for
each sequence (m) to the minimal value it could take such
that the total number of possible stems is less than
Nmax
stems ¼ 150. These choices were all made to speed up

computation time; each sequence took between several sec-
onds and an hour to run. Details of the computation time of
our algorithm can be found in Figs. S4–S6.

Although these practical constraints were chosen to speed
up the computation time, they also led to errors in the
ssess the relative success of our algorithm, we compare its performance in

prediction tools: RNAFold (33,118), ViennaRNA (Andronescu parameters)

ext Fold (123), HotKnots (Dirks-Pierce parameters), HotKnots (Rivas-Eddy

4), RNAPKplex (33,118), and iterated loop matching (ILM) (38). We mea-

tructure, the average per-base topology accuracy (defined in the main text),

ults into sequences that experimentally form pseudoknots and those that do

ires only two parameters to describe the entropy of any arbitrary secondary

lgorithms tested against) and that the parameters were trained on non-pseu-

predicting pseudoknotted structures and performs on par with them in pre-

success is dependent on the accuracy of our loop entropy model because

ain text for further discussion). To see this figure in color, go online.

https://github.com/ofer-kimchi/RNA-FE-Landscape


FIGURE 5 Probability of folding into a pseudoknot. The predicted prob-

ability of each of the 421 sequences tested folding into a pseudoknot is

presented. Of these sequences, 186 were experimentally found not to

form pseudoknots (blue) and 235 were found to form pseudoknots (red).

Our algorithm successfully predicts pseudoknots forming in the latter cate-

gory far more frequently than in the former. For figure clarity, a lower

bound of pseudoknot probability was set at 2 � 10�10. To see this figure

in color, go online.

Pseudoknot Entropy Model
algorithm’s predictions. Of the tested pseudoknots, 64 were
topologically more complex than any of those presented in
Fig. S2. Furthermore, 33 of the non-pseudoknotted se-
quences tested (and eight of the pseudoknotted) include
basepairs outside of those allowed by the algorithm (AU,
GC, and GU). Removing such structures from our compar-
ison analysis leads to our algorithm performing even better
compared to current tools (see Fig. S3).

Further errors were due to our choice of m, which was not
optimized and was too high compared to the length of the
shortest stem in the experimental structure for 58 non-pseu-
doknotted cases and 54 pseudoknotted cases. By changing
Nmax
stems from 150 to 200, these numbers decreased to 46 for

both pseudoknotted and non-pseudoknotted sequences, but
the results for Nmax

stems ¼ 200 were practically identical to
the results of Fig. 4 (see full results in Table S1). For
Nmax
stems ¼ 200, the computation time was increased signifi-

cantly (to several hours in the worst cases, though the major-
ity of the computation time is spent on the Feynman
diagram decomposition process, which has not been opti-
mized in the current code). In addition to these sources of
error, the nearest-neighbor parameters may need to be re-
examined to be used most effectively with the loop entropy
model presented here.

We considered the basepairs present in the experimental
structure and in each algorithm’s MFE structure. Basepairs
present in both were labeled as true positives (TP), those
present only in the predicted algorithm were labeled as false
positives (FP), and those present in the experimental struc-
ture but not the predicted MFE structure were labeled as
false negatives (FN). The sensitivity (TP/TP þ FN) and
the positive predictive value (PPV; TP/TP þ FP) of our
algorithm were measured to be 0.80 and 0.75 for the non-
pseudoknotted cases and 0.75 and 0.76 for the pseudoknot-
ted cases, respectively. Our algorithm performed better than
or as well as all other prediction tools tested for the predic-
tion of pseudoknots and on par with other tools in the pre-
diction of non-pseudoknotted sequences. The full results
can be found in Table S1.

Although sensitivity and PPV are the most common met-
rics used to establish the success of an RNA prediction algo-
rithm (89), we sought to develop a test that measures success
on the scale of the full RNA rather than on the scale of indi-
vidual basepairs. To this end, we measured how frequently
each algorithm was able to correctly predict the topology
of the experimentally measured structure, in which the topol-
ogy of a structure is defined by its graph. We found for our
algorithm that the experimental topology is within the top
1, 5, and 10 topologies at frequencies of 49, 65, and 70%
for non-pseudoknotted structures, and 34, 59, and 62% for
pseudoknotted, demonstrating a sharp increase between top
1 and top 5 and a plateau between top 5 and top 10.

Considering whether an algorithm correctly predicts the
full topology can lead to errors arising from small variations
in structure. For example, the opening of a single bond on
the edge of a stem can lead to a different topology as we
have defined it, if that stem includes one of the ends of
the molecule. To arrive at a per-base measure of topology,
we consider for each bond along the RNA backbone to
which of the minimal graphs of Fig. S2 it belongs. For
example, the bond between the second and third nts of
Fig. 3 a belong to a stem of an open-net-2a graph. We
then measure for each sequence the fraction of correct
per-base topology predictions made by each algorithm’s
predicted MFE structure. We find that our algorithm aver-
ages an 76% per-base topology prediction accuracy for
non-pseudoknotted sequences and a 49% accuracy for
pseudoknotted.

Finally, we compare how frequently each algorithm pre-
dicts an MFE structure containing a pseudoknot. Our algo-
rithm correctly predicted 174/235 pseudoknots among the
pseudoknotted cases, far more than any other algorithm
tested. However, it also erroneously predicted 35/186 incor-
rect pseudoknots among the non-pseudoknotted cases.

For each of these metrics, the success of our algorithm is
dependent on the loop entropy model. If we set all loop en-
tropies to zero, our algorithm’s predictive power plummets
(see Fig. 4, dark green). This is especially true for the pre-
diction of non-pseudoknotted structures because removing
the loop entropy term leads the algorithm to erroneously
predict that 88% of these would form pseudoknots.

Our algorithm also provides the probability of folding
into a pseudoknotted structure for each sequence. These
data for the 421 sequences tested are presented in Fig. 5.
Each data point represents a different sequence and the total
Biophysical Journal 117, 520–532, August 6, 2019 527
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probability calculated of that sequence folding into a pseu-
doknotted structure. For figure clarity, a lower bound of
pseudoknot probability was set at 2 � 10�10.

The algorithm’s predictions for the six longest RNA se-
quences less than 89 nts in length from the PseudoBaseþþ
database are presented in Fig. 6. We considered only those
sequences whose structure was directly supported by exper-
iments and which could be decomposed into the minimal to-
pologies shown in Fig. S2. We display the experimental
structure (green background) alongside the MFE predicted
structure (light blue background) and the top six predicted
topologies (out of several hundred, depending on the
sequence; dark blue) in which the experimental topology
is highlighted (purple). RNA secondary structure was
plotted using the PseudoViewer package (90). Our results
demonstrate successful predictions even for long pseudo-
knotted sequences, especially in terms of the predicted
topology. Detailed methods are provided in Supporting Ma-
terials and Methods.
FIGURE 6 Comparison to experiments for long sequences. Six long sequenc

text. The sequences are fragments derived from the following (starting from the to

(127), tobacco mild green mosaic virus (125,128), Bacillus subtilis (129), Giard

supported by (numbering the sequences in the same order) sequence comparison

modeling (1), and NMR (6). We show the experimental structure (green backgro

the PseudoViewer software (90). We also display the top six topologies (out of s

predicted probabilities, with the topology corresponding to the experimental stru

dictions even for these long pseudoknotted sequences, especially in terms of th
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CONCLUSIONS

The accurate prediction of the ensemble of secondary struc-
tures explored by an RNA or DNA molecule has played a
major role in shaping modern molecular biology and DNA
nanotechnology over the past several decades. In this
work, we showed that the modern ubiquity of extremely
powerful computers can be used alongside novel polymer
physics techniques to completely enumerate and solve for
the free energy landscape of an RNA molecule including
complex pseudoknots. This exponential time algorithm
can be used to tackle even relatively long (�80 nts) RNA se-
quences and, aside from the enumeration procedure (which
is relatively fast compared to the free energy calculation
for long sequences; see Figs. S4 and S6), is easily
parallelizable.

Remarkably, the entropy model discussed in this work re-
quires only two parameters—orders of magnitude fewer
than other current algorithms—corresponding to clearly
es were chosen from the PseudoBaseþþ database as described in the main

p left and moving across): tobacco mosaic virus (124–126), Bacillus subtilis

iavirus (130), and Visna-Maedi virus (131). The experimental structures are

(1–4,6), structure probing (1,3,5,6), mutagenesis (2,4–6), three-dimensional

und) and the MFE-predicted structure (light blue background) plotted using

everal hundred, depending on the particular sequence) and their respective

cture highlighted in purple. Overall, our results demonstrate successful pre-

e predicted topology. To see this figure in color, go online.
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measurable physical quantities. Despite this and despite the
fact that all parameters used in our model were derived us-
ing experiments on non-pseudoknotted RNA, our algorithm
is more successful in predicting pseudoknotted structures
than any of the other algorithms tested and on par with all
predictors tested in predicting non-pseudoknotted structures
on a benchmark data set of sequences of length %80 nts.
The success of our algorithm is particularly notable given
that the entropy model developed in this work can be used
to address any RNA secondary structure, regardless of
complexity. Given these results, we expect that more accu-
rate entropy models can be formulated by building atop the
framework presented here and have highlighted several
avenues for improvement.

Although we have not done so in this work, we expect
that our results can be further improved by optimizing the
nearest-neighbor parameters, given the entropy model pre-
sented here.

The algorithm presented here can also be easily general-
ized to probe multiple interacting strands (see discussion in
Supporting Materials and Methods). The sequences consid-
ered can be any combination of DNA and RNA; their iden-
tities affect the nearest-neighbor parameters of the model
that have been previously tabulated (91) and to a lesser
extent, the two entropy parameters (b and vs).

Our finding that the integral formulation of the entropy of
arbitrary complex RNA secondary structures can be repre-
sented graphically is reminiscent of Feynman diagrams in
quantum field theory. The topologies defined by these
graphs can also serve as useful biological constructs to
group similar RNA structures together. The depiction of
RNA structure as a graph has played an important role in
the prediction of RNA secondary structure (22,74,92,93)
as well as in the search for novel RNAs (94,95) and the
description of similarity between RNA structures (96–99),
which is especially useful in the study of the effects of mu-
tations (100,101). A common approach among these graph-
ical depictions of RNA has been to represent loops (e.g.,
hairpins, internal loops, etc.) as vertices and stems as edges
(94,98,99). However, this depiction of RNA does not always
distinguish between pseudoknotted and non-pseudoknotted
structures (94). Our approach has a similar coarse-graining
effect of grouping similar structures as the same graph but
explicitly distinguishes between different topologies of sec-
ondary structure and may therefore be useful in the contexts
described previously. Although our approach is in many
ways similar to the planar digraphs of (94), it is able to
address the ambiguity present in those graphs, particularly
with regards to parallel stems (see Fig. 2 of (94)).

We expect that the complete free energy landscape predic-
tion described in this work will be useful in understanding the
kinetics of RNA and DNA structure transitions, including the
interactions of multiple strands (24,25,102–108). In addition
to the complete energy and entropy landscapes, a complete
kinetics model only needs a definition of the transition state
matrix. Such a matrix can be derived from the energy and
entropy landscapes directly. For example, by defining neigh-
boring states as secondary structures differing by the opening
or closing of a single basepair, the transition rate of opening a
basepair is expected to be exponential in the energy difference
of the two states, whereas the rate of closing a basepair is
exponential in the entropy difference (24,102,109). Even for
transitions between two non-pseudoknotted structures, pseu-
doknots often play a significant role in the transition pathway
(108,110–113). Predicting the kinetics of structure transitions
using this framework and determining whether such kinetics
can be accurately predicted for RNAmolecules of the lengths
considered here, using only secondary structure consider-
ations, will be a subject for future work.

SUPPORTING MATERIAL
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The supplementary information is divided into several sections. In Sections S1 and S2 we detail our implementation
of the nearest-neighbor parameters, as well as the methods used to compare our algorithm’s performance to other
current models. In Section S3 we discuss how our algorithm can be easily generalized to probe multiple interacting
strands including any combination of DNA and RNA. In Section S4 and Fig. S1 we provide a more complete derivation
of Eq. 7. In Section S5, we show how to analytically calculate the integrals in Eq. 7. In Section S6 we derive the
higher-order corrections to Eq. 5.

In Fig. S2 we display all possible graphs of up to two stems and their respective RNA structures along with the
integral formulation of their entropies and their evaluated forms. In Fig. S3 we discuss how our algorithm compares
to state-of-the-art prediction tools (the analogue of Fig. 4) when restricting ourselves to structures allowed by the
chosen constraints on our algorithm.

In Section S7A we discuss how our algorithm’s properties scale with the length of the sequence for random sequences
between 10 and 21 ntds in length, shown in Fig. S4. In Section S7B, we provide a mathematical discussion for why
the average number of structures for a sequence of length n scales exponentially with n; the discussion corresponds
to Fig. S5. We show running time and total number of secondary structure distributions for sequences in our dataset
in Fig. S6, with a corresponding discussion in Section S7C.

In Fig. S7, we demonstrate that loop entropies are highly non-negligible; the magnitude of the predicted loop
entropy is roughly equal to the magnitude of the total free energy of a structure. In sections S8 and S9 and in figures
S8 - S10 we show the entropy calculation for pseudoknots more complex than those in Fig. S2; namely, the kissing
hairpins pseudoknot and the most common pseudoknots found in our benchmark dataset. Finally, in Section S10 and
Fig. S11, we demonstrate a sample free energy calculation and graph decomposition process.

S1. FURTHER METHOD DETAILS

A. Implementation of nearest-neighbor free energies

Our entropy model (described in the Materials and Methods section) was used in place of the entropies of hairpin,
bulge, internal, and multibranch loops and we set the enthalpy terms of these loops (aside from nearest-neighbor
interactions) to zero; we did not consider mismatch-mediated coaxial stacking, symmetry penalties or penalties for
specific closures of stems; and we implemented coaxial stacking terms in place of terminal mismatches or dangling
ends whenever two stems in multibranch loops are directly adjacent.

B. Comparison with other prediction tools

In order to compare the sensitivity and PPV of different prediction tools, we considered the base pairs present in
the experimental structure and in each algorithm’s MFE structure. Base pairs present in both were labeled as true
positives (TP ), base pairs present in the predicted algorithm were labeled as false positives (FP ) and those present
in the experimental structure but not the predicted MFE structure were labeled as false negatives (FN). In order
to compare different metrics we use the summary statistics of sensitivity (TP/TP + FN) and PPV (TP/TP + FP ).
PPV is a more useful metric for RNA structure prediction algorithms than specificity because the definition of true
negatives is unclear when considering base pairs.

∗Electronic address: okimchi@g.harvard.edu
†Electronic address: ljc37@cam.ac.uk
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The sequences tested were downloaded from the Pseudobase++, RNAStrand, and CompaRNA PDB databases.
We constrained database searches to return results only for sequences of length ≤ 80 ntds. We further restricted the
search of the RNAStrand database to only include sequences where all nucleotides were known, and to not include
fragments, multiple strands, or duplicates. We removed all sequences that had hairpins of under 3 ntds. Finally, we
compared the sequence similarity of the sequences derived and kept only sequences with ≥ 0.2 Jukes-Cantor sequence
dissimilary measured using the MatLab command seqpdist, which aligns sequences using the Needleman-Wunsch
algorithm with the NUC44 scoring matrix. The Jukes-Cantor distance between two sequences is defined as

dJC = −3

4
log

(
1− 4p

3

)
(S1)

where p is the fraction of sites which differ between the sequences after they have been aligned. By imposing dJC ≥ 0.2
we impose a constraint that p > 0.17.

We assumed T = 300K for all predictions.
In order to speed up computation for longer sequences, we set the parameter m describing the minimum number

of consecutive base pairs in a stem to the minimum value it can take such that the total number of possible stems is
less than 150. This latter parameter was chosen arbitrarily and is likely not optimized; however, changing it to 200
had no significant effect (see data in Supplementary Table 1). Setting the maximum total number of possible stems
to 150 resulted in m = 1 for 22% of the sequences, m = 2 for 33% of the sequences, m = 3 for 23%, m = 4 for 20%,
and m = 5 for nine sequences. Changing the maximum total number of possible stems to 200 resulted in m = 1 for
34% sequences, m = 2 for 29% of sequences, m = 3 for 22%, m = 4 for 15%, and m = 5 for one sequence.

Our algorithm can enumerate and calculate the entropies of both parallel and antiparallel stems. (An antiparallel
stem is a list of consecutive base pairs of the form [i · j, (i+ 1) · (j − 1), (i+ 2) · (j − 2)...], while a parallel stem has
the form [i · j, (i+ 1) · (j + 1), (i+ 2) · (j + 2)...].) Parallel stems are disallowed in non-pseudoknotted structures, and
are stabilized at certain pH levels. We disallowed parallel stems in our calculations.

As part of the enumeration procedure, we created a compatibility matrix Cp,q detailing the compatibility of struc-
tures p and q (structures p and q are compatible if they do not share any nucleotides). In practice, since there are
some structures whose entropies we have not analytically derived, we found it useful to also construct three- and
four-dimensional matrices C3 and C4 which define three- and four-way compatibility, in order to exclude most such
structures at this stage.

In order to compare topologies, we measure whether the eigenvalue spectra of the two matrices defining the bonds
between each node are equal (two matrices are needed because there are two types of bonds). This method is
guaranteed to correctly identify graph isomorphisms in all cases but may have false positives. We have found no
evidence of false positives in all cases tested (compared against the MatLab isisomorphic command).

For the analysis in Fig. 6 we also set m > 1 to speed up computation. Starting from the top left and going across,
we set m = (4, 3, 3, 4, 4, 4). We also disallowed parallel stems in order to speed up the computation.

S2. PREDICTION TOOL PARAMETERS

To compare our results, we used the implementation of other prediction tools, when provided by the authors. In
most cases, program options have been left to their default value. We list below some of the more important options.

• RNAFold: Temperature: 37 C

• Andronescu: Temperature: 37 C

• Mfold: Temperature: 37 C

• CONTRAFold: γ = 6

• PPfold: N/A

• Centroidfold: γ = 6

• ContextFold: Model: “trained/StHighCoHigh.model”

• HotKnots DP/RE/CC: energy model DP/RE/CC

• ProbKnot: 1 iteration
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• pknots: N/A

• RNAPKplex: Temperature: 37 C

• ILM: N/A

S3. PROBING MULTIPLE INTERACTING STRANDS

The algorithm presented here can also be easily generalized to probe multiple interacting strands, using only one
further parameter which has been previously studied to define the free energy cost of forming a duplex [1, 2]. Following
Ref. [3] we concatenate the two (or more) sequences, separated by a number of inert nucleotides which serve as a
placeholder and which are removed before free energy calculations are implemented.

The algorithm described here can be equally well-applied to DNA strands by using the parameter sets from the
SantaLucia laboratory [4] . In addition, our algorithm can probe DNA-RNA bonds using the parameter sets from
Refs. [5, 6], and interpolating between the DNA and RNA cases for those parameters that have not yet been tabulated
from experimental data. The inclusion of DNA strands may require slight modification to the two entropy parameters
(b and vs) which are based on data from RNA experiments.
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S4. DERIVING EQ. 7

FIG. S1: A preliminary description of an H-type pseudoknot. A: An instance of the canonical H-type pseudoknot,
reprinted from Fig. 3. B: A preliminary version of the graph representing its entropy. In Sec. S4 we demonstrate that this
graph is equivalent to that shown in Fig. 3A.

In this section we more fully detail the steps leading to Eq. 7, the entropy of the RNA structure depicted in Fig.
S1A.

We start by treating each nucleotide as its own node, subject to the constraint that the distance between nucleotides
is given by a = 0.33 nm. Writing such an expression is cumbersome, but because of the property of Ps(~r) that∫
Px(~r1)Py(~r2 − ~r1)d~r1 = Px+y(~r2), we can simply integrate over all nodes not at the edges of stems.
The full expression for the entropy of this graph is thus given by

e∆S/kB =

∫
d ~r0′

∫
d~r1

∫
d ~r1′

∫
d~r2

∫
d ~r2′

∫
d~r3

∫
d ~r3′ q( ~r0′) q(~r2 − ~r2′)×

δ3(|~r1| − l1) δ3(|~r1 − ( ~r1′ − ~r0′)|) δ3(|~r3 − ~r2| − l2) δ3(|~r3 − ~r2 − ( ~r3′ − ~r2′)|) Ps1(~r3 − ~r1) Ps2(~r2 − ~r1′) Ps3( ~r2′ − ~r0′)

which is depicted graphically in Fig. S1B. We are using δ3(|x| − a) to signify

δ3(|~x| − a) =
δ(|~x| − a)

4πa2
;

∫
d~x δ3(|~x| − a) = 1. (S2)

δ3(|x| − a), like Ps(~r), has units of inverse volume.
Vectors are defined relative to the origin where node 0 is placed (i.e. |~r0| = 0). There is no integration over ~r0

because such an integral would cancel out with the corresponding term in Sfree, and thus disappear in the formula
for ∆S.
q(~r) is defined as the probability of a nucleotide located a vector ~r from the origin to be bonded to a nucleotide

located at the origin (assuming the two nucleotides are complementary). If following Ref. [7] we wish to include an
upper bound for the bond length, rs, q(~r) becomes a Heaviside Θ function. Integration over q leads to the definition
of vs: vs =

∫
d~rq(~r).

Only two factors of q are present, as opposed to one factor for each base pair in the structure, because we take
the entropy of stems into account separately. For this expression, we treat stems as rigid rods; while the rods have
variable and finite width (corresponding to the property that nucleotides do not need to be at a precise separation in
order to bond), they cannot be thicker on one end than the other, since including such possibilities would overcount
the entropy of the stem. Our expression thereby has the property that it is invariant if we also integrate over two
nodes representing two arbitrary base pairs (say, one on the stem between node 0 and node 1, and one between nodes
0′ and 1′). The choice of which bonded nodes on each stem to put in the argument of q is arbitrary, but there is only
one bonded node (and therefore one q term) for each stem.

We make progress by assuming that because of the q terms and delta functions, nodes representing nucleotides
which are bonded are located close enough that the vector ~r between them can be approximated as having zero length
within the context of the terms Ps(~r).

We therefore approximate our formula as
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e∆S/kB =

∫
d ~r0′

∫
d~r1

∫
d ~r1′

∫
d~r2

∫
d ~r2′

∫
d~r3

∫
d ~r3′ q( ~r0′) q(~r2 − ~r2′)δ

3(|~r1 − ( ~r1′ − ~r0′)|) ×

δ3(|~r3 − ~r2 − ( ~r3′ − ~r2′)|) δ3(|~r1| − l1) δ3(|~r3 − ~r2| − l2) Ps1(~r3 − ~r1) Ps2(~r2 − ~r1) Ps3(~r2)

By employing transformations as in Section S5 (e.g. ~r′ ≡ ~r1′− ~r0′), the four integrals over the primed nodes become
two integrals over delta functions (which give unity) and two over the q terms. The latter two become two factors of
vs, and we arrive at Eq. 7.
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S5. PERFORMING THE GAUSSIAN INTEGRALS

The method of performing the Gaussian integrals of Eq. 7 can be generally applied to the calculation of the
entropies of other pseudoknots, and so we describe it in detail here.

Eq. 7 is given by

e∆S/kB = v2
s

∫
d~r1

∫
d~r2

∫
d~r3

δ(|~r1| − l1)

4πl21

δ(|~r3 − ~r2| − l2)

4πl22
Ps1(~r3 − ~r1)Ps2(~r2 − ~r1)Ps3(~r2)

We start by utilizing our approximation that the integrals extend over all of space to rewrite d~r2d~r3 as d~r2d(~r3− ~r2),
and we rewrite all instances of ~r3 as (~r3 − ~r2) + ~r2.

e∆S/kB = v2
s

3∏
i=1

(
γ

πsi

)3/2 ∫
d~r1

δ(|~r1| − l1)

4πl21

∫
d~r2

∫
d(~r3 − ~r2)

δ(|~r3 − ~r2| − l2)

4πl22
×

e
γ

[
−
(

( ~r3− ~r2)2

s1

)
−(~r2−~r1)2

(
1
s1

+ 1
s2

)
− r22

s3
− 2

s1
(~r3−~r2)·(~r2−~r1)

]
,

where for notational convenience have defined a parameter γ = 3/2b.1.
To do the (~r3 − ~r2) integral, we convert to polar coordinates such that (~r3 − ~r2) · (~r2 − ~r1) = |~r3 − ~r2||~r2 − ~r1| cos θ.

Performing the integral yields

e∆S/kB = v2
s

3∏
i=1

(
γ

πsi

)3/2
e−γl

2
2/s1

2

∫
d~r1

δ(|~r1| − l1)

4πl21

∫
d~r2 e

γ

[
− r22

s3
−(~r2−~r1)2

(
1
s1

+ 1
s2

)](
e(2γl2|~r2−~r1|/s1) − e(−2γl2|~r2−~r1|/s1)

2γl2|~r2 − ~r1|/s1

)
.

We now use the same trick from before to rewrite d~r2 as d(~r2 − ~r1), and rewrite each instance of ~r2 as (~r2− ~r1)+ ~r1.
As before, (~r2 − ~r1) · ~r1 becomes |~r2 − ~r1||~r1| cos θ. Denoting (~r2 − ~r1) as ~r and doing the integral over r1 after
performing this transformation yields

e∆S/kB = v2
s

3∏
i=1

(
γ

πsi

)3/2
e
−γ
(

l22
s1

+
l21
s3

)
2

∫ ∞
0

dr r2 e
−γr2

(
1
s1

+ 1
s2

+ 1
s3

)(
e(2γl2r/s1) − e(−2γl2r/s1)

2γl2r/s1

)∫ 1

−1

d cos(θ)e−2γ
l1r
s3

cos(θ).

Finally, we perform the integrals remaining to arrive at

e∆S/kB =

v2
sγ

2 exp

(
−γ(l

2
1(s1+s2)+l22(s2+s3))
s1s2+s1s3+s2s3

)
2π3l1l2s2

√
s1s2 + s1s3 + s2s3

× sinh

(
2γl1l2s2

s1s2 + s1s3 + s2s3

)
where sinh is the hyperbolic sine function. This formula is equivalent to the one presented without proof in Ref. [8].

It can be easily verified (see Fig. S2) that the entropy of an open net can be calculated given the formula for the
corresponding closed net, which has an extra single-bond of length si, through multiplication by (γ/πsi)

−3/2 and
taking the limit si →∞. The formula for the “very open net 2”, which is identical to any of the open nets that have
two stems after removing the edge corresponding to s2, can thus be calculated to be

e∆Svery-open-net-2/kB =
v2
sγ

1/2

2π3/2l1l2
√
s1 + s2

sinh

(
2γl1l2
s1 + s2

)
exp

(
−γ l

2
1 + l22
s1 + s2

)
where we’ve labeled the two single-stranded edges’ lengths to be s1 and s2. This net can form only from two strands
binding to one another, as opposed to some of the other nets shown in Fig. S2 which describe two strands bound or
one strand with parallel stems.

1 The parameter γ was called β in Refs. [8] and [9]
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S6. HIGHER-ORDER CORRECTIONS TO ENTROPY

Eq. 5 , which gives the probability of a random walk of length s to have end-to-end distance ~R, is valid only in the

limit of R � b (where we’ve denoted R ≡ |~R|). For shorter walks, the Central Limit Theorem no longer holds. In
this section, we show a systematic approach to deriving higher-order corrections to the probability distribution given
by Eq. 5. The approach taken here is based on a textbook by Ariel Amir (to be published).

We consider n steps in three dimensions, where each step is taken to be of length b with equal probabilities in
all directions. Thus, s = nb. The probability distribution for where a walker will be after n = 1 steps is given by

Pn=1(~R) ≡ δ(|R| − b)/4πb2. After two steps, the probability distribution for where the walker will be is given by

P2(~R) =

∫
d ~R1P1( ~R1)P1(~R− ~R1). (S3)

The form of Eq. S3 is that of a convolution of P1(~R) with itself. In order to iterate many convolutions easily, we
move to Fourier space, since the Fourier transform of a convolution is the product of Fourier transforms. Fourier

transforming P1(~R) yields its characteristic function: p̂1(~ω) =
∫ ∫ ∫∞

−∞ d~R P1(~R)ei~ω·
~R, which simplifies to

p̂1(ω) =
sin(ωb)

ωb
(S4)

which only depends on ω ≡ |~ω|.
In order to iterate n convolutions in real space, we can simply take the nth power of the Fourier transform, finding

p̂n(ω) = (sin(ωb)/ωb)
n
. (S5)

Taking the inverse Fourier transform, we find

Pn(~R) =
2

(2π)2

∫ ∞
0

dω ω2

(
sin(ωb)

ωb

)n
sin(ωR)

ωR
. (S6)

At this point, we use our assumption that n is large. This formula tends to zero for large values of ωb, and we
therefore Taylor expand the sin function for small ωb. If we take only the first two terms of this series, we would
arrive at Eq. 5 ; we therefore take the first three terms to get the first correction to Eq. 5 . Higher-order corrections
can be found by simply taking more terms of the series. Eq. S6 thus becomes

Pn(~R) =
2

(2π)2

∫ ∞
0

dω ω2e
n log

(
1− (ωb)2

6 +
(ωb)4

120 +O(ωb)6
)

sin(ωR)

ωR

Next, we Taylor expand the logarithm and write the sin as a sum of exponentials. Since the two terms in the sum
are identical under the exchange ω → −ω, we combine them into one term by changing the lower limit of integration
to −∞.

Pn(~R) =
1

(2π)2iR

∫ ∞
−∞

dω ωe
−n
[

(ωb)2

6 +
(ωb)4

180 +O(ωb)6
]
+iωR

. (S7)

If we didn’t have the quartic term, this integral would be Gaussian and would result in Eq. 5. However, if we keep
this term, the integral is no longer solvable analytically. We proceed by setting

e
−n
[

(ωb)4

180

]
= 1− n(ωb)4

180
+O(ωb)8. (S8)

As is apparent, the finite truncation of this series results in corrections of higher order than the truncation of the
series for sin(ωb) or of the logarithm above.

Using this series expansion, Eq. S7 becomes a Gaussian integral, which can be solved analytically to yield
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Pn(~R) =

(
3

2πsb

)3/2

e

(
− 3R2

2sb

) [
1−

3
(
5s2b2 − 10sbR2 + 3R4

)
20s3b

]
. (S9)

where we’ve replaced n by s/b.

One of the essential properties of Pn(~R) for our formalism to function is that
∫
Pn1(~R1)Pn2(~R2 − ~R1)d~R1 =

Pn1+n2
(~R2). One can check directly that this holds for Eq. S9. Keeping only first-order correction terms, and

defining ~R21 = ~R2 − ~R1,

∫
Pn1

(~R1)Pn2
(~R2 − ~R1)d~R1

=

∫
d~R1

(
32

22πs1s2b2

)3/2

e

[
− 3

2b

(
R2

1
s1

+
~R2
21

s2

)] 1−
3
(
5s2

1b
2 − 10s1bR

2
1 + 3R4

1

)
20s3

1b
−

3
(

5s2
2b

2 − 10s2b ~R
2
21 + 3~R4

21

)
20s3

2b


=

(
3

2π(s1 + s2)b

)3/2

e

(
− 3R2

2
2(s1+s2)b

) [
1−

3
(
5(s1 + s2)2b2 − 10(s1 + s2)bR2

2 + 3R4
2

)
20(s1 + s2)3b

]
= Pn1+n2

(~R2).
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FIG. S2: Graphs of simple RNA structures. The 10 graphs with at most two regions of double-stranded RNA and their corresponding RNA backbones are
displayed alongside integral and evaluated expressions for the entropy of each graph. Note that stems shown as parallel could be antiparallel if the system considered
is comprised of more than one strand. For example, closed-net-1 is an intermolecular kissing hairpin complex. We do not include the “very open net 2”, a bi-molecular
structure that can be created by taking any of the open nets with two stems and removing the edge corresponding to s2; the relevant calculation is described in the
main text. See Fig. 2 of Ref. [9] for comparison. See Section S5 for a description of how to perform the integrals, and for a discussion of how to easily calculate the
entropy of an open-net given that of the corresponding closed-net.
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FIG. S3: Results only including sequences whose structure our algorithm could have predicted. We consider
only the 153 non-pseudoknotted and 165 pseudoknotted sequences whose structures do not include base pairs or topologies
disallowed by our algorithm. In this case, we predict the correct topology with 49% (47%) accuracy for non-pseudoknotted
(pseudoknotted) structures. This number increases to 62% (82%) and 67% (85%) for top-5 and top-10 accuracy. Surprisingly,
we therefore find that our algorithm actually performs better in predicting the pseudoknotted structures in the databases used
than the non-pseudoknotted structures. The main results are the same for this dataset as for the full dataset plotted in Fig.
4: our algorithm outperforms all 14 algorithms tested against in predicting pseudoknotted structures, and performs on par
with the other algorithms in predicting non-pseudoknotted structures, even though it uses orders of magnitude fewer entropic
parameters than the other algorithms tested against.
The constraint placed on allowed sequences in this figure allows us to address to what extent the polymer physics entropy
model developed in this work is responsible for our good results, rather than the enumeration scheme. This figure represents
a control of the enumeration procedure; pknots, which comes closest to our algorithm’s success, only predicts seven sequences
included in this dataset to fold into a structure more complex than our algorithm’s chosen constraints allow. Removing these
seven sequences (in addition to those already removed) does not have a significant effect on the results presented in this figure.
(The largest effect is in the accuracy of the predicted topology which increases for pknots from 0.33 to 0.35). We conclude that
the difference between our novel entropy model and pknots’ (or other algorithms’) phenomenological model, rather than the
difference in the enumeration procedure, is primarily responsible for the success of our algorithm compared to current metrics.
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S7. SCALING OF THE ALGORITHM PROPERTIES FOR RANDOM SEQUENCES AND
DISTRIBUTIONS OF ALGORITHM PROPERTIES FOR SEQUENCES IN THE BENCHMARK

DATASET

A. Scaling for random sequences

In order to test the scaling properties of the algorithm, we input 100 random sequences for each length between
10 and 21 nucleotides, and set m = 1. We plot various properties of the results as a function of the length of the
sequence in Fig. S4A. Blue circles are datapoints for each of the 100 sequences in each column. Purple points show
the mean. The number of secondary structures grows exponentially with the length of the sequence, as expected
due to the brute-force nature of the algorithm, though the number of possible stems grows sub-exponentially. These
results are explained later in this section. Similarly, the number of topologies grows exponentially. The probability
of forming a pseudoknot appears to plateau at around 10%.

In Fig. S4B, we show that the time the algorithm takes to calculate free energies (the rate limiting step for sequences
of any substantial length) grows approximately linearly with the number of possible secondary structures. This is
precisely as expected, since the algorithm independently calculates the free energy of each structure, in a process that
is easily parallelizable. Deviations from linearity are presumably due to memory constraints which lead to increased
computational time for sequences for which many structures need to be stored. While it is customary to plot the
time taken as a function of sequence length, as shown in panel A there is a wide variability for each sequence length
in the total number of structures, and therefore a similarly wide variability in the time taken. The time taken by the
algorithm for a given sequence is better-predicted by the total number of structures enumerated for that sequence
than by its length. As shown in panel A (top left) and explained below, the average number of structures for a given
sequence grows exponentially with the sequence length, and therefore, the total time taken by the algorithm also
grows exponentially with sequence length.

In panel C, we show that for large numbers of stems, the number of possible secondary structures grows as a power
law with the number of possible stems. This sub-exponential behavior is due to the fact that some stems cannot
coexist in the same structure (if they share any of the same nucleotides or if their coexistence leads to a topology
more complex than those in Fig. S2).

B. Scaling of number of structures with sequence length

One main result of the above analysis is that the algorithm runtime is dominated by the scaling properties of the
number of structures with the length of the sequence. We therefore sought to better understand this scaling, especially
for longer sequences which are not examined in Fig. S4.

A first-order estimate ignores the steric effects of pairing (such as the constraint that if two nucleotides are within
a certain linear distance in sequence space, they cannot pair to one another as doing so would create a hairpin that is
too small). We make this approximation, and only consider that two nucleotides can pair if they are complementary,
and importantly, cannot pair to more than one partner within the same structure. The neglected effect is of course
important, though it is expected to give only a higher order correction (i.e. it will not be the dominant effect for
purposes of examining scaling behavior for long sequences). The exception of course is for short sequences for which
steric effects will be significant – and for which we have enumerated a representative sample of possible structures
in Fig. S4. If sterics have any significant effect, it will be to decrease the number of possible structures for short
sequences especially, and the effect will be less pronounced for longer sequences which are those we are concerned
with here.

For each sequence of length n, we can therefore make structures that include up to jmax = floor(n/2) base pairs.

We can enumerate the number of structures with j base pairs, which we call N j
structures, and then sum this function

up for j values from 1 to jmax. In other words

N total
structures =

jmax∑
j=1

N j
structures

We calculate N j
structures by going base pair by base pair. For the first base pair, there are n first nucleotides to

choose from, and on average 3(n− 1)/8 complementary nucleotides. Since we could flip which nt is chosen first and
which second, we also multiply by a factor of 1/2. Once the first base pair is chosen, there are n − 2 nts remaining,
which form a sequence of length n− 2 nts which can be analyzed just as the previous sequence of length n (in other
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words, we’re describing a mathematically recursive process). Finally, for a structure comprised of j base pairs, there
are j! possible (equivalent) orderings of base pairs. Therefore,

N j
structures =

1

j!

j−1∏
i=0

3

16
(n− 2i)(n− 2i− 1). =

1

j!

(
3

16

)j
n!

(n− 2j)!
.

Simplifying, we find that the average total number of structures for a sequence of length n, ignoring steric constraints,
is

N total
structures =

floor(n/2)∑
j=1

1

j!

(
3

16

)j
n!

(n− 2j)!
.

We tested this equation by explicitly enumerating all possible sequences of length up to 20 nucleotides (see Python
code posted to GitHub) and finding perfect agreement with the equation.

This result demonstrates that the total number of structures grows approximately exponentially with the length
of the sequence, even for sequences much longer than those examined in Fig. S4 (for which this exponential scaling
was also apparent). We plot the result for sequences up to length 400 in Fig. S5. Despite slight curvature for short
sequences (for which this naive scaling estimate will not be accurate since steric constraints will be dominant), the
result shows exponential growth of the total number of possible structures with the length of the sequence.

As the figure makes clear, the number of possible structures places a significant limit on the length of sequences one
can consider by complete landscape enumeration. However, the limit is not nearly as bad as what is suggested by the
figure, since the steric considerations ignored to produce it eliminate many structures. Furthermore, by considering
stems of length m rather than single base pairs, we can reach sequences up to around 90 nts.

C. Distribution of algorithm scaling properties for benchmark dataset sequences

In Fig. S6 we describe running time and secondary structure count distributions for sequences in the benchmark
dataset. We show the histogram of the total time taken to run the algorithm with Nmax

stems = 150 in panel A (left),
finding that the longest time taken was 25 minutes for one sequence. In panel A (middle) we show a histogram of
the total number of secondary structures enumerated by the algorithm, finding a wide distribution spanning several
orders of magnitude. We also demonstrate that we are in the regime where parallelization will strongly affect the
runtime of the algorithm by showing (panel A, right) that the free energy calculation took several times longer than
the enumeration procedure. We note however that the details of this calculation (especially the graph decomposition
procedure which takes the bulk of the time) have likely not been optimized.

In panel B we show similar plots for the case when no constraints on the types of pseudoknots possible were included
(i.e. pseudoknots more complex than those shown in Fig. S2 were also enumerated). We show that including these
pseudoknots increases the time it takes to enumerate the structures significantly; the maximum time for a single
sequence using Nmax

stems = 150 increases to 11 hours (panel B, left). While the total number of enumerated secondary
structures also increases dramatically (panel B, middle) by leveraging the parallelizability of the algorithm we remain
well within the realm of feasibility given the rapid recent growth of available computing power. We also demonstrate
(panel B, right) that by decreasing Nmax

stems even to 100, orders of magnitude fewer structures are enumerated. The time
taken to enumerate the structures also decreases significantly (the maximum is 9 minutes). Our results demonstrate
that even exponential-time algorithms such as this complete enumeration are not prohibitive.

In Fig. S7 we examine the loop entropies for the MFE structures predicted by our algorithm for the sequences in
the benchmark dataset. We find that the loop entropy (multiplied by temperature) ranges from 5-35 kcal/mol, and
is in particular higher for pseudoknotted structures. We further find that the magnitude of the loop entropy is on
average slightly over half that of the stem free energy, but represents a higher fraction for pseudoknotted structures.
Since the loop entropies contribute in opposite sign to the stem free energies, this demonstrates that as a general rule,
the magnitude of the predicted loop entropy is roughly equal to the magnitude of the total free energy of a structure.
The accuracy of the loop entropy model is therefore highly significant.
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FIG. S4: Scaling of the algorithm properties with length of sequence. We input 100 random sequences for each length
between 10 and 21 nucleotides into the algorithm. (A) Various properties of the results are plotted as a function of the length
of the sequence. Blue circles are datapoints for each of the 100 sequences in each column. Purple points show the mean. The
number of secondary structures grows exponentially with the length of the sequence, as expected due to the brute-force nature
of the algorithm, though the number of possible stems grows sub-exponentially. The probability of forming a pseudoknot
appears to plateau at around 10%. The number of topologies grows exponentially (we exclude topologies more complex than
those shown in Fig. S2 and the structures leading to them). The green line shows the total number of different topologies over
all 100 sequences of a given length. We disallowed parallel stems for this analysis. (B) The time the algorithm takes to calculate
free energies grows approximately linearly with the number of possible secondary structures, and therefore exponentially with
sequence length (see panel A, top left). The data is well-fit to a power law y = axb with parameters a = (3.8 ± 0.3) ∗ 10−4

and b = 1.27 ± 0.01. The time taken to enumerate all the structures is constant for short sequences (when few structures are
enumerated and the algorithm’s overhead is the rate-limiting factor) and then grows as a power law. For sequences of any
substantial length, the algorithm is rate-limited by the time it takes to compute free energies, rather than the time taken to
enumerate structures. The MatLab program was run on a MacBook Pro 2012 laptop with a 2.3 GHz Intel Core i7 processor
and 8 GB memory. (C) For large numbers of stems, the number of possible secondary structures grows as a power law with the
number of possible stems. This sub-exponential behavior is because some stems cannot coexist in the same structure (if they
share any of the same nucleotides or if their coexistence leads to a topology more complex than those in Fig. S2). The purple
line shows a fit to the equation y = axb with R2 = 0.81. The best-fit values of a and b are found to be a = 0.0129± 0.0065 and
b = 3.24 ± 0.11.
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FIG. S5: Simple scaling estimate for the total number of structures with sequence length. In Section S7 we find an
exact formula for the average number of possible structures as a function of sequence length, neglecting steric effects. Here we
plot the results of that formula. We find that despite slight curvature for short sequences (for which this naive scaling estimate
will not be accurate since steric constraints will be dominant), the result shows exponential growth of the total number of
possible structures with the length of the sequence. Plot created using Mathematica
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FIG. S6: Running time and secondary structure count distributions for sequences in the benchmark dataset.
a: Left: Histogram of the total time taken to run the algorithm with Nmax

stems = 150 for sequences in the benchmark dataset.
The longest time taken was 25 minutes for one sequence. Unlike Fig. S4, these results were calculated on a Macbook Pro
2016 laptop with a 3.1 GHz Intel Core i7 processor and 16 GB memory. Middle: A histogram of the total number of
secondary structures enumerated by the algorithm. Right: Calculating the free energy (FE) took several times longer than
the enumeration procedure, though the details of this calculation (especially the graph decomposition procedure which takes
the bulk of the time) have likely not been optimized. b: Results when no constraints on the types of pseudoknots possible
were included (i.e. pseudoknots more complex than those shown in Fig. S2 were also enumerated) Left: Including all types of
pseudoknots increases the time it takes to enumerate the structures significantly; the maximum time for a single sequence using
Nmax

stems = 150 increases to 11 hours. Middle: The total number of enumerated secondary structures also increases dramatically,
but remains well within the realm of feasibility given the rapid recent growth of available computing power. Right: Orders
of magnitude fewer structures are enumerated if Nmax

stems is decreased even to 100. The time taken to enumerate the structures
also decreases significantly (the maximum is 9 minutes). Our results demonstrate that even exponential-time algorithms such
as this complete enumeration are not prohibitive.
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FIG. S7: Loop entropy statistics. We examine the loop entropies for the MFE structures predicted by our algorithm
for the sequences in the benchmark dataset. We show the results for all sequences (first column), only non-pseudoknotted
structures (second column), and only pseudoknotted structures (third column). We considered the predicted structures for
the purposes of this classification, but the results don’t change significantly if they are classified based on the experimental
structures. The first row shows the magnitude of the predicted loop entropies. We find that the loop entropies range from
0 to ∼35 kcal/mol, and are in particular higher for pseudoknotted structures, as expected. The second row shows the ratio
between the magnitude of the predicted loop entropies and the stem free energies ∆Gstems = ∆Hstems − T∆Sstems, which were
calculated using the Turner parameters. We find that the magnitude of the loop entropy is on average half that of the stem
free energy, but represents a higher fraction for pseudoknotted structures. Since the loop entropies contribute in opposite sign
to the stem free energies, this demonstrates that as a general rule, the magnitude of the predicted loop entropy is roughly equal
to the magnitude of the total free energy of a structure.
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S8. APPLYING OUR FORMALISM TO KISSING HAIRPIN PSEUDOKNOTS

FIG. S8: Examples of topologies whose entropies need to be solved numerically. A A kissing hairpin pseudoknot. B
The most common topology in the dataset which is more complex than those allowed by our chosen constraints. It is equivalent
to an H-type pseudoknot with an internal loop in one of the stems.

A biologically common complex pseudoknot for which no entropy calculation has been available is the kissing-
hairpin pseudoknot (Fig. S8A). Using our formalism, the entropy of this structure can be estimated by solving the
integral

e∆S/kB = v3
s

∫
d~r1

∫
d~r2

∫
d~r3

∫
d~r4

∫
d~r5

δ(|~r1| − l1)

4πl21

δ(|~r3 − ~r2| − l2)

4πl22

δ(|~r5 − ~r4| − l3)

4πl23
×

Ps1(~r5)Ps2(~r2 − ~r1)Ps3(~r3 − ~r1)Ps4(~r4 − ~r2)Ps5(~r4 − ~r3). (S10)

We describe the process by which this integral can be solved. First, we let γ = 3/2b and call s′i = si/γ, neglecting
the primes from here on for notational convenience. We let α = π−15/2(s1s2s3s4s5)−3/2(vs/4π)3(l1l2l3)−2. We let
~rij = ~ri − ~rj . The main difficulty in solving these integrals is choosing the proper integration variables. The integral
is

e∆S/kB = α

∫
d ~r54 d~r4 d ~r32 d~r2 d~r1 δ(|~r1| − l1) δ(| ~r32| − l2) δ(| ~r54| − l3)×

exp
[
−( ~r54 + ~r4)2/s5 − (~r2 − ~r1)2/s1 − ( ~r32 + ~r2 − ~r1)2/s2 − (~r4 − ~r2)2/s3 − (~r4 − ~r32 − ~r2)2/s4

]
. (S11)

We can now proceed to first do the ~r54 integral, following the same procedure as in Section S5. ~r54 · ~r4 becomes
| ~r54||~r4| cos θ where θ is the integral between the vectors ~r54 and ~r4. The integral over all terms containing ~r54 yields
πl3s5
r4

e−l
2
3/s5−r

2
4/s5(e2l3r4/s5 − e−2l3r4/s5).

We can similarly do the ~r1 integral. In order to do so, we define a variable x = ~r2(1/s1 + 1/s2) + ~r32/s2. Thus,
~r1 only appears in our integrals as r2

1 and as ~r1 · x. In order to change the integration variable r2 to x, we need to
introduce the Jacobian J = (s1s2/s1 + s2)3. We also set a = s1

s3
− s2

s4
. After doing the integral, we can expand out

the exponent to get

e∆S/kB = αJπ2l1l3s5e
−l23/s5−l

2
1( 1

s1
+ 1

s2
)
∫
d~r4

1

r4
e−r

2
4( 1

s3
+ 1

s4
+ 1

s5
)
(
e2l3r4/s5 − e−2l3r4/s5

)
×∫

d~x
1

x
e
−x2

[
s1s2

s1+s2
+(

s1s2
s1+s2

)2( 1
s3

+ 1
s4

)
] (
e2l1x − e−2l1x

)
e

2~x·~r4
(

s1s2
s1+s2

( 1
s3

+ 1
s4

)
)
×∫

d ~r32δ(| ~r32| − l2)e
−r232

(
1

s1+s2
+

s21/s3+s22/s4

(s1+s2)2

)
e

2~x· ~r32 s1s2a

(s1+s2)2
−2~r4· ~r32 a

s1+s2 . (S12)

As can be seen, if a = 0, meaning s1
s3

= s2
s4

, then ~r32 only enters our equations as r2
32. In this case, integration over

~r32 simply yields 4πl22e
−l22

(
1

s1+s2
+

s21/s3+s22/s4

(s1+s2)2

)
. Setting θ to be the angle between ~r4 and ~x, integration over θ proceeds

as in previous cases. Integration over the remaining three angles gives 8π2. Thus,
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e∆S/kB (a = 0) = αJ16π5l1l
2
2l3s5

(
s1 + s2

s1s2( 1
s3

+ 1
s4

)

)
e
−l21( 1

s1
+ 1

s2
)−l22

(
1

s1+s2
+

s21/s3+s22/s4

(s1+s2)2

)
−l23/s5×∫ ∞

0

dr4e
−r24( 1

s3
+ 1

s4
+ 1

s5
)
(
e2l3r4/s5 − e−2l3r4/s5

)∫ ∞
0

dxe
−x2

[
s1s2

s1+s2
+(

s1s2
s1+s2

)2( 1
s3

+ 1
s4

)
] (
e2l1x − e−2l1x

)
×(

e
2xr4

(
s1s2

s1+s2
( 1
s3

+ 1
s4

)
)
− e−2xr4

(
s1s2

s1+s2
( 1
s3

+ 1
s4

)
))

. (S13)

These integrals can be solved analytically (by completing the square in the exponent for each of the eight terms in
the sum). The result is

e∆S/kB (a = 0) = αJ16π5l1l
2
2l3s5

(
s3s4(s1 + s2)

s1s2(s3 + s4)

)
e
−l21(

s1+s2
s1s2

)−l22
(

s1234+s3s4(s1−s2)a

s3s4(s1+s2)2

)
−l23/s5×

2π(s1 + s2)

√
s3s4s5

s1s2(sq + s1234)
e

l21s3s4(s1+s2)2

s1s2s1234
+

l21s2q+l23s21234
s5s1234(sq+s1234) sinh

(
2l1l3sq

s5(sq + s1234)

)
(S14)

where we’ve defined sq = s5(s1 +s2)(s3 +s4) and s1234 = s1s2s3 +s1s2s4 +s1s3s4 +s2s3s4. We’ve written the solution
so that the bottom line is the result of the integrals, and written the prefactor of l22 in a way that clarifies how it
simplifies.

We can simplify the final result by introducing the variables

sA =
s5(sq + s1234)

sq
; sB =

s3s4(s1 + s2)2

s1234
; sv =

√
sq + s1234.

yielding

e∆S/kB (a = 0) =
(vs/sv)

3

2π9/2

sA
l1l3

e
−
(

l21+l23
sA

)
− l22

sB sinh

(
2l1l3
sA

)
(S15)

One of the concrete predictions emerging from this calculation is that if a = 0, meaning that the pseudoknot is
symmetric, that the entropy of the structure should depend on l2 only as exp(−l22/sB) where sB depends on the
lengths of the various loops but is independent of l1, l3, and s5.

We now return to the more general case of a 6= 0. In this case, we define a new variable ~y to be the total vector
dotted with ~r32 in Eq. S12: ~y = s1s2a

(s1+s2)2 ~x−
a

s1+s2
~r4. Integration over ~r32 then yields

e∆S/kB (a 6= 0) = αJπ3l1l2l3s5e
−l21( 1

s1
+ 1

s2
)−l22

(
1

s1+s2
+

s21/s3+s22/s4

(s1+s2)2

)
−l23/s5×∫

d~r4
1

r4
e−r

2
4( 1

s3
+ 1

s4
+ 1

s5
)(e2l3r4/s5 − e−2l3r4/s5)

∫
d~x

1

x
e
−x2

[
s1s2

s1+s2
+(

s1s2
s1+s2

)2( 1
s3

+ 1
s4

)
]
(e2l1x − e−2l1x)×

e
2~x·~r4

(
s1s2

s1+s2
( 1
s3

+ 1
s4

)
)

1

y

(
e2l2y − e−2l2y

)
. (S16)

As before, we can perform three of the angle integrals to yield 8π2, and define θ to be the angle be-
tween ~r4 and ~x. Then, ~x · ~r4 becomes r4x cos θ. We can then write y in terms of cos θ: y =

√
~y · ~y =

a
s1+s2

√
s21s

2
2

(s1+s2)2x
2 + r2

4 − 2s1s2
s1+s2

r4x cos θ. We can thus turn the integration over cos θ into an integration over y (again,

the Jacobian needs to be accounted for). Defining the limits of the integration to be y± =

√
a2

(s1+s2)2

(
s1s2

(s1+s2)x± r4

)2

,

we have
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e∆S/kB (a 6= 0) = αJ8π5l1l2l3s5
(s1 + s2)3

s1s2a2
e
−l21( 1

s1
+ 1

s2
)−l22

(
1

s1+s2
+

s21/s3+s22/s4
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0
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s3
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s4
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∫ ∞
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s1s2s1234
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dye

(
s21s22

(s1+s2)2
x2+r24−

(s1+s2)2

a2 y2
)(

1
s3

+ 1
s4

) (
e2l2y − e−2l2y

)
. (S17)

The y integral must be done first because its limits include the other two integration variables. However, this
integral results in an error function which cannot be integrated analytically. While various limits might be taken to
impose analyticity, given the speeds of programs like Mathematica in performing simple numerical integrals like this
one, we prefer to solve the resulting integrals numerically.

There are eight parameters to be varied, and we display the results of the entropy calculation for single-parameter
sweeps in Fig. S9. For this figure, we set s1 = 3, s2 = 4, s3 = 6, s4 = 8, s5 = 3, l1 = 2, l2 = 3, l3 = 4. Then, keeping
all other parameters at those values, we take each parameter and measure the entropy as a function of varying that
parameter.

The resulting plot contains eight different curves, which we’ve plotted in Fig. S9. As expected, for s1 = s5 = 3,
the blue and orange curves coincide. Varying the loop lengths (panel A) appears to give less dramatic changes than
varying the stem lengths (panel B). The parameter l2 was capped at seven because for values greater than that, one
of the hairpins wouldn’t be able to close (s1 + s2 < l2). The asymmetry between the l1 and l3 curves is due to
the asymmetry between the constant values of l1 and l3 chosen. We also verified that the result of the numerical
integration for a 6= 0 approaches the result of the analytic solution (a = 0) as a approaches zero.

We also give a more comprehensive result of the numerical integration. Since displays of eight-parameter tables are
difficult to achieve, we give the results of this numerical integration for values of si and li ranging from 1 to 5 (or s′i
ranging from 1/γ to 5/γ) as a .h5 file. These types of files can easily be imported using, for example, Python, with
the following lines of code:

import h5py
import numpy as np
f = h5py . F i l e ( ’ k i s s i ngHa i rp in sSuppF i l e . h5 ’ , ’ r ’ )
k = np . array ( f [ l i s t ( f . keys ( ) ) [ 0 ] ] )

This code sets the variable k to be an eight-dimensional array, such that k[a][b][c][d][e][f][g][h] is the
entropy (in units of kB) of a kissing hairpin with s′1 = (a + 1)/γ, s′2 = (b + 1)/γ, ..., l1 = f + 1, ..., l3 = h + 1. The
addition of 1 is included because Python begins indexing at 0.

We set the two loop entropy parameters to b = 2.4 and vs = 0.02. As mentioned, the entropy is measured in units
of Boltzmann’s constant kB .

We also considered the constraints that each hairpin must have ≥ 3 nts (so s1 + s2 + l2 ≥ 4 and same for s3 and s4)
and that the hairpins must be able to close (so s1 + s2 ≥ l2 and same for s3 and s4). We included these constraints
by setting the table values to 0 if these constraints aren’t satisfied; of course, if these constraints aren’t satisfied the
entropy should really be considered to be −∞.
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FIG. S9: One dimensional parameter sweeps for the kissing hairpin pseudoknot entropy. We set s1 = 3, s2 = 4,
s3 = 6, s4 = 8, s5 = 3, l1 = 2, l2 = 3, l3 = 4. Then, keeping all other parameters at those values, we take each parameter and
measure the entropy as a function of varying that parameter. See the text for detailed discussion.



21

S9. CONSIDERING OTHER COMPLEX PSEUDOKNOTS

FIG. S10: Common topologies disallowed by constraints chosen for our algorithm implementation.

Similar approaches as in the previous section can be taken for other pseudoknots more complex than those shown
in Fig. S2.

As discussed, there were 64 pseduoknotted sequences in the experimental datasets used which were found to fold
into topologies more complex than those allowed by the constraints we chose to place on the algorithm. Of these 64
sequences, we sought to determine the topologies they shared in common. The six most common topologies and the
number of sequences folding into them are plotted in Fig. S10. The most common topology (shown in large in Fig.
S8B) is equivalent to an H-type pseudoknot with an internal loop in one stem. As can be seen from Fig. S10, the
second and fifth most common topologies are only slight variations on the first: the second is identical to the first
with one of the stem lengths set to zero (i.e. the stem is made up of a single base pair) and the fifth is identical to
the first with the dangling unpaired regions on the 3’ and 5’ ends removed.

The entropy of the most common disallowed topology, displayed in large in Fig. S8B, is given by

e∆S/kB = v3
s

∫
d~r1

∫
d~r2

∫
d~r3

∫
d~r4

∫
d~r5

δ(|~r1| − l1)

4πl21

δ(|~r3 − ~r2| − l2)

4πl22

δ(|~r5 − ~r4| − l3)

4πl23
×

Ps1(~r2)Ps2(~r2 − ~r1)Ps3(~r4 − ~r3)Ps4(~r4 − ~r3)Ps5(~r5 − ~r1). (S18)

After changing our integration variables to be ~r1, ~r21, ~r32, ~r45, and ~r53, we follow the same formula as for the kissing
hairpin pseudoknot to get a similar expression:

e∆S/kB = α8π5l1l2l3
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(
1
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)∫ y+
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dye−y
2/s5

(
e2l2y/s5 − e−2l2y/s5

)
(S19)

where y± =
√

(r53 ± r21)2.
Using this formula, we find that if one instead considers the entropy of the H-type pseudoknot with an internal

loop to be comprised of the sum of the entropies of the H-type pseudoknot and the internal loop, this leads to an
overestimate of the entropy cost of at least 1 kcal/mol over nearly all parameter values at 37◦C. This overestimate
is significantly higher for some parameters; a representative example is the case of l1 = 2, l2 = 4, l3 = 4, s1 = 3,
s2 = 3, (the results are fairly insensitive to s3, s4, s5) which yields an entropy difference of 3.3 kcal/mol, or a 23%
error. Changing these parameters can both increase or decrease this error, but there is a very wide parameter regime
in which the error due to not taking into account the nestedness of the internal loop is significant.
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S10. SAMPLE FREE ENERGY CALCULATION AND GRAPH DECOMPOSITION PROCESS

FIG. S11: Sample structure. A structure under consideration; B graph representing the structure; C fully decomposed
graph. The loop entropy of the structure is the sum of the loop entropies of the graphs in this panel.

Here we describe the graph decomposition process – the basis for the loop entropy calculation in practice – in some
more detail and provide a sample calculation of the free energy as an example.

Given a structure (graph) we test each possible edge for whether removing that edge leads to a disconnected graph.
If so, we remove it, and the two resulting graphs represent two different motifs. We repeat, and compare the final
graphs (that cannot be decomposed further) to our tabulated list (Fig. S2); some of these graphs may represent
pseudoknots, while others represent hairpins. Thus, using our tabulated or analytically calculated results for the loop
entropy of each possible graph, we calculate the loop entropy of each motif in the RNA structure, and sum them to
find the total loop entropy.

As an example, let’s consider the structure shown in Fig. S11A. We’d like to calculate the free energy of this
structure. First, we calculate the enthalpy terms using the Turner parameters. These include a dangling end, as well
as stacking terms and terminal mismatches:

G . G C . C C . C G . G A
C C ’ C G ’ G G ’ G C ’ C C

C C . C U . U A . A G . G A
A G ’ G A ’ A U ’ U C ’ C C

U A . A C . C G . G A . A U
C U ’ U G ’ G U ’ U U ’ U U

where the top line goes from 5’ to 3’ and the bottom line is antiparallel. The bolded C (last in second row) represents
the approximation in the Turner rules that if two base pairs can bind but are unbound in the structure, the purine
is replaced with A and the pyrimidine with C. Each of these terms has an associated enthalpy and entropy from the
tabulated Turner parameters.

Once these terms have been added up, the remaining step is calculating the free energy of the loops. First, we
convert the structure to a graph (Fig. S11B) by placing nodes at the edges of stems (here we also place nodes at the
ends of the sequence). These nodes are connected by double-stranded (blue) or single-stranded (red) edges. In fact,
since the stems have at least length 1, each node (except for perhaps the ones representing the edges of the molecule)
must be connected to one double-stranded and two single-stranded edges; the hairpin loop counts as two edges for
this purpose. The lengths of the various edges are provided in the figure.

Now, we perform the graph decomposition process. We test each possible edge for whether removing that edge leads
to a disconnected graph. The first edge for which this is true is that connecting nodes three and four. We therefore
remove that edge, and the two resulting graphs represent two different motifs. We repeat, finding that removing the
edge between nodes four and five similarly disconnects the graphs, and same for the edge between nodes four and
six. Finally, finding that nodes four and six are not connected to any edges we remove those. We compare the final
graphs that cannot be decomposed further – Fig. S11C – to our tabulated list (Fig. S2). We find here that we have
one instance of an open-net-2a (l1 = 3; l2 = 3; s1 = 7; s2 = 4; s3 = 8) and a closed-net-0 (s1 = 5). This gives us the
loop entropy resulting from this structure, which we add to the bond entropy found using the Turner parameters to
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get the total free energy of the structure.
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