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A computational toolbox for the assembly
yield of complex and heterogeneous
structures

Agnese I. Curatolo1, Ofer Kimchi 2, Carl P. Goodrich3, Ryan K. Krueger 1 &
Michael P. Brenner 1,4

The self-assembly of complex structures from a set of non-identical building
blocks is a hallmark of soft matter and biological systems, including protein
complexes, colloidal clusters, and DNA-based assemblies. Predicting the
dependence of the equilibrium assembly yield on the concentrations and
interaction energies of building blocks is highly challenging, owing to the
difficulty of computing the entropic contributions to the free energy of the
many structures that compete with the ground state configuration. While
these calculations yield well known results for spherically symmetric building
blocks, they do not hold when the building blocks have internal rotational
degrees of freedom. Here we present an approach for solving this problem
that works with arbitrary building blocks, including proteins with known
structure and complex colloidal building blocks. Our algorithm combines
classical statisticalmechanics with recently developed computational tools for
automatic differentiation. Automatic differentiation allows efficient evaluation
of equilibrium averages over configurations that would otherwise be intract-
able. We demonstrate the validity of our framework by comparison to mole-
cular dynamics simulations of simple examples, and apply it to calculate the
yield curves for known protein complexes and for the assembly of colloidal
shells.

The hierarchical assembly of complex building blocks underpinsmuch
of biology, allowing the spontaneous formation of protein complexes,
virus shells, and structural components of the cell with high accuracy
andwithout external influence. A hallmark of these assembly processes
is that they are often heterogeneous: individual componentsmaking up
the assembled product are different from each other, having different
shapes and binding characteristics. Such heterogeneous components
store information about their assembly processes via their highly tuned
interactions. Heterogeneous self-assembly contrasts with classical
homogeneous self-assembly, whereby large numbers of identical
components interact to form materials.

In recent years, it has become possible to synthesize hetero-
geneous components in the laboratory. Examples range from nanos-
tructures either coated with1 or entirely composed of DNA2,3, to
proteins with rationally designed binding interfaces4,5, to litho-
graphically printed blocks with magnetic interactions6, to colloids
coated with hydrophilic and hydrophobic patterns7,8, to shape com-
plementarity of colloids with tunable depletion forces9,10.

The potential design space of heterogeneous self-assembly is
enormous. If the interactions between individual entities can be cho-
sen at will, then determining the choices leading to a desired assembly
target (or more generally an interesting emergent behavior) can be
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quite difficult. A popular approach has been to choose individual
components such that the desired structure is theminimal free energy
state of the system11. In a variety of systems, fromDNA to proteins, this
approach has led to the assembly of complex structures. However,
even when components are chosen so that the desired structure is the
ground state, crosstalking interactions causenon-desired structures to
form12,13 or incomplete structures can bemore favorable under certain
conditions. Given specific interactions, there is a fundamental limit on
the size of complex structures that can reliably assemble out of het-
erogeneous components14,15. With increasing numbers of components,
there is a yield catastrophe above which the yield of the desired
structure decays exponentially. For polymeric structures, the yield
catastrophe can be controlled by tuning the individual concentrations
of the different components15, but finding assembly strategies that
achieve high yield for non-polymeric systems remains difficult.

Robust strategies for solving these problems in the laboratory are
unknown. Biology shows that robust solutions exist, but has had mil-
lions of years of evolution to find the best designs. For synthetic sys-
tems, the time and monetary costs of experimentally testing various
self-assembly mixtures to determine those with highest yields can be
significant.

A typical route towards addressing these challenges is to use
molecular simulations. Simulations could allow rapid screening of the
design space of heterogeneous assembly in particular experimental
systems, including how the shape, binding characteristics and relative
concentrations of the building blocks contribute to the desired
emergent property16. Significant advances in computational software
have made it possible to simulate assemblies of components with
nontrivial shapes and interactions. However, such simulations, espe-
cially for large heterogeneous structures, are often prohibitively
expensive. The use of simulations for exploring heterogeneous
assembly has therefore been limited.

Another approach to predict the equilibrium self-assembly yield is
to calculate it analytically. While for spherical particles with isotropic
interactions the partition functions for small clusters can be calculated
analytically17, no such analytical calculation exists for anisotropic
interactions. We hypothesized that automatic differentiation could be
leveraged to perform this otherwise intractable calculation18–20. In
automatic differentiation, the execution of a computer program is
accompanied by the construction of a computation graph of primitive
operations whose derivatives are known and can therefore be
recombined (via the chain rule) to compute the gradient of the larger
program. This procedure can be applied recursively, allowing us to
efficiently evaluate higher-order derivatives of nearly any computer
function with machine accuracy.

The goal of this paper is to develop a combined analytical/com-
putational approach for calculating the concentration- and
temperature-dependencies of equilibrium assembly yield for hetero-
geneous building blocks with complex geometries. We show that this

approach enables us to calculate the relevant entropic factors—vibra-
tional, rotational and translational—and estimate the equilibrium
assembly yield of the structures.

This paper is organized as follows. First, we present the core sta-
tistical mechanical model, extending prior theories for the self-
assembly of identical spherical colloids to heterogeneous compo-
nents with complex geometries. We show that several terms that
cannot be calculated purely analytically can be accurately calculated
by leveraging newly-developed computational automatic differentia-
tion tools (JAX)21,22. Next, we compare the model to simulations to
explore its regime of validity and sources of potential error. We apply
our procedure (depicted in Fig. 1) to twobiological protein assemblies,
the PFL and TRAP complexes, and predict the temperature- and
concentration-dependence of their equilibrium assembly. Finally we
demonstrate that our method can be applied to compute the yield of
large multimeric structures such as cages.

Basic algorithms and code are open-sourced at Github23.

Results
The analytical model
Defining the yield. We consider a cluster comprised of Ns building
blocks with short range interactions. Each building block i has three
translational degrees of freedom ðqix , qiy, qizÞ= q!i and three rotational
ones, represented by the three Euler angles ðφi,θi,ψiÞ= ϕ

!
i. The

potential energy of the cluster Esðf q!,ϕ
!gÞ is thus a function of 6Ns

coordinates.
The equilibrium properties of the cluster are determined by its

partition function

Zs =
1
σs

Z
Ωs

YNs

i = 1

d3 q!id
3 ϕ
!

i

 !
e
�βEs q!,ϕ

!n o� �
ð1Þ

whereΩs is the region of phase space where the cluster is defined, and
the symmetry number σs accounts for all possible combinations of
rotations and building block permutations that result in the same
cluster s24. Although (1) is a well-known result17 we also derived it more
fully in “Methods—Deriving the equilibrium yields” for completeness.

(1) describes the properties of a single cluster. In a self-assembly
process, however, many clusters coexist and compete with each other
to recruit building blocks. The question we ask is: at equilibrium, if we
pick a cluster at random, what is the probability that we pick cluster s?
The observable quantity associated with such probability is the equi-
librium yield Ys. In experiments or agent-based numerical simulations
where we can enumerate the number ns of clusters of type s, the yield
can be simply defined as

Ys =
nsP
s0ns0

, ð2Þ

Fig. 1 | Overview of the analysis procedure. We depict the process by which we
predict assembly yield as a functions of systemparameters, using the TRAP protein
complex as an example. Starting with a given complex (here, a PDB file), we gen-
erate a coarse-grained model (here, each amino acid is replaced by a sphere). We
specify the contacts at the various binding interfaces and their strengths (here,

using patches at the interfaces). We then enumerate all possible structures that can
form (in this case, 3 monomers, 3 dimers, 1 trimer). Finally, we compute the par-
tition function for each structure as described in this work, and compute the
expected yields of each structure as a functionof systemparameters. The true yield
curves for the TRAP protein complex are shown in Fig. 4.
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where the sum in the denominator runs over all possible occurring
structures s0.

Within the grand canonical ensemble, the yield can be expressed
in terms of the normalized concentrations ~cα of the different building
block species, proportional to their fugacities25 (see “Methods—
Deriving the equilibrium yields” for further details):

Ys =

Q
α
~cNs,α
α

� �
Zs

Q � Qs

Q , ð3Þ

whereNs,α is the number of building blocks of type α in structure s. The
grand partition functionQ of the system is then the sum ofQs over all
clusters that the system can form25.

The partition function calculation. For simple models, e.g., if the
building blocks have rotational symmetry and the attractive energy is
isotropic, the integral in (1) can be directly computed numerically. For
more complicated problems, that involve e.g., anisotropic potentials
and non-trivial rotational degrees of freedom, a possible route is to
compute the integral by sampling (e.g., with Monte Carlo techniques).
This is computationally expensive, with a cost that grows with the
number of substructures and the complexity of components. Another
possibility is to analytically compute these terms. While historically
such calculations have been highly challenging, we show that using
modern automatic differentiation tools makes this straightforward.
The analytical approach is more efficient, and also gives insight into
the physics of the different terms in the partition function.

We assume that the building blocks can have arbitrary shape, and
that their interactions can be localized to specific regions (interfaces)
of the building block. We restrict our calculation to only treat rigid
clusters, where we use the term “rigid” as opposed to “floppy” to
indicate a clusterwithout zeromodes (i.e., internal degrees of freedom
about which movement incurs no energetic cost)26. Accounting for
such internal degrees of freedom requires a challenging and nontrivial
calculation of the relevant entropic factor beyond the scope of this
current work. A geometric formulation of the entropic factor resulting
from such floppy modes has been addressed for the case of isotropic
potentials with short interaction range in ref. 27. Intuitively, the free
energy of a system with n zero modes is represented as an n-dimen-
sional manifold whose boundaries can be determined from the col-
lection of configurations with (n − 1) zero modes.

We start our analytical calculation by performing a change of
coordinates in (1) that allows us to express the integral in terms of
center of mass (COM) coordinates of the cluster. These new coordi-
nates are 3 global translations q!c and 3 global rotations ϕ

!
c of the

cluster, and 6Ns − 6 internal vibrations ξi, as a consequence of the rigid
cluster assumption. These new coordinates automatically take into
account the effective phase space Ωs over which the integral in Zs
needs to be performed, so that it does not need to be specified
explicitly. The change of coordinates reads

Zs =
1
σs

Z
d3 q!c

Z
d3 ϕ

!
c

Z
d6Ns�6 ξ

!
J q!c,ϕ

!
c, ξ
!� �

e
�βE ξ

!� �
ð4Þ

where J is the Jacobian of the coordinate transformation and E the
energy of the cluster—where we have dropped the subscript s. In this
reference system, we assume that the potential energy of the cluster
does not depend on the global translations and rotations, but only on
the internal vibrations. In order to perform the integral, we need to
compute Eð ξ!Þ and Jð q!c,ϕ

!
c, ξ
!Þ.

The Jacobian introduced in (4) is the matrix of partial derivatives
of a function f : R6N ! R6N such that f(ν) = μ, where μ= f q!,ϕ

!g are
the coordinates in the building blocks’ reference frame and
ν = f q!c,ϕ

!
c, ξ
!g are the coordinates in the cluster’s reference frame. In

order to define fwe first compute the eigenvalues and eigenvectors of

theHessian of the energy.We then define a function ~f : R6N�6 ! R6N ,
which corresponds to the transpose of the matrix of eigenvectors
associated with the nonzero eigenvalues. Thus, ~f ð~νÞ= ~μ, where ~ν = ξ

!

and ~μ represent the internal degrees of freedom in the building blocks
reference frame. Finally, we apply a rotation Rðϕ!cÞ and a translation
Tð q!cÞ to ~f to yield the function of the variables transformation f:

f =T � R � ~f : ð5Þ

We note that the Jacobian of f turns out to be a simple function of the
moment of inertia only if the individual building blocks do not have
rotational degrees of freedom, e.g., in the case of uniformly DNA-
coated colloids17. However, if the building blocks have rotational
degrees of freedom that depend on the global rotations of the cluster
(in the case of proteins that can only bind with specific orientations),
then the Jacobian assumes a more complicated form (see “Methods—
The Jacobian of a dimer with rotational degrees of freedom”).

Translational entropy. To start with, we consider the Jacobian’s
dependence on the translational coordinates q!c. By definition, the
COM positions are a linear transformation of the building blocks’
coordinates ( q!c =

P
i q
!

i=N), which implies that the Jacobian is inde-
pendent of the global translations. We can thus readily perform the
integral over the translations q!c which simply yields the system
volume V, so that we obtain

Zs =
V
σs

Z
d3 ϕ

!
c

Z
d6Ns�6 ξ

!
J ϕ
!

c, ξ
!� �

e
�βE ξ

!� �
: ð6Þ

Vibrational entropy. Secondly, we look at the integrand’s
dependence on the vibrational modes ξ

!
. We consider the case in

which the thermal energy ismuch smaller than the potential energy of
the cluster. In this case, the vibrations are small and the integral is
dominated by the minimum of the potential energy E0 of the cluster.
We can then apply Laplace’s approximation28, which yields

Zs = e
�βE0

V
σs

Y6Ns�6

i = 1

ffiffiffiffiffiffiffiffiffi
2π
βω2

i

s !Z
d3 ϕ

!
c J ϕ

!
c

� �
, ð7Þ

where the ω2
i ’s are the eigenvalues of the Hessian of the energy

Eð ξ!Þ, calculated via automatic differentiation using the function
jax.hessian() at ξ

!
= 0
!

(see “Methods—Computing the partition
function with automatic differentiation”). Note that Jðϕ!cÞ is also
evaluated at ξ

!
= 0
!

, which constrains the building blocks’ relative
positions and orientations to those that define the cluster s.

Here, we have taken Laplace’s approximation to lowest (second)
order. The error arising from this approximation will increase for less
parabolic energy landscapes such as can occur for more esoteric
interaction potentials, more complex interfaces, or even for longer-
range interactions (Supplementary Fig. 3). As energy minima become
less parabolic, higher-order corrections need also be considered. Such
corrections can be computed using the inverse of the Hessian matrix
alongside higher-order derivatives28. In the Numerical Results section
we explore and comment on the validity of Laplace’s approximation in
this context.

Rotational entropy. The remaining integral, of the Jacobian over
the global rotations, is performed numerically. First, we uniformly
sample 105 values of ϕ

!
c using the quaternion representation, to avoid

problems that arise from sampling Euler angles, such as non-uniform
distribution of orientations, singularities, and the gimbal lock
problem29. It may be possible to achieve high accuracy with fewer
calculations but we found that 105 samplings were sufficient to yield
accurate analytic predictions. For the results presented in this manu-
script, this sampling procedure took < 30 seconds of compute time
and < 3MBofmemory (asmeasured by the tracemalloc library) on a
personal laptop computer (e.g., 26s and 2 MB for the TRAP complex
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trimer presented subsequently in the manuscript). We then convert
the sampled quaternions to Euler angles—using the {x, y, z} (fixed)
convention—so that rotations are represented with only three vari-
ables. Although it might in principle be possible to express the Jaco-
bian of the change of rotational variables analytically (see “Methods—
The Jacobian of a dimer with rotational degrees of freedom”), this is
highly non-trivial in 3D, and we instead use automatic
differentiation21,22 (see “Methods—Computing the partition function
with automatic differentiation”). This approach allows us to numeri-
cally evaluate the Jacobian at each value of the rotations previously
sampled. We define the result as

~J =
Z

d3 ϕ
!

c Jðϕ
!

cÞ ð8Þ

and obtain our final expression for Zs:

Zs = e�βE0 ×V ×
~J
σs

×
Q6Ns�6

i= 1

ffiffiffiffiffiffi
2π
βω2

i

q
� e�βE0 ×Z trans

s ×Z rot
s ×Zvib

s ,

ð9Þ

where we have manually separated the results of the integrals into
translational, rotational and vibrational partition functions.

Finding a self-consistent solution for the yields. Once we have cal-
culated the partition functions of the individual structures, we aim to
calculate the structures’ yields using (3). For systems with low self-
assembly yields, an accurate estimate of the yield can be found by
treating the concentrations in (3) as the total individual monomer
concentrations. However, as yields increase, the reservoir of mono-
mers is depleted, such that the concentrations are no longer well-
approximated by the total monomer concentrations added to the
system.

We therefore seek a self-consistent solution for the yields of the
different structures, while imposing conservation laws for each of the
monomer species. There is one conservation law for each monomer
species, given by

X
s

Ns,αcs = c
tot
α ð10Þ

where cs is the concentration of structure s, ctotα is the total con-
centration of monomer α, and as previously Ns,α is the number of
monomers of type α in each structure s. Note that the unbound
monomer is a valid equilibrium structure and is therefore included in
the above sum.

To supplement the conservation laws, we require a linearly-
independent equation for each non-monomeric structure whose yield
we seek to estimate. These equations are most easily formulated as
Vcs =Qs. Using (3), this equality can be rewritten as a mass action
equation30–32:

VcsQ
α Vcα
� �Ns,α

=
ZsQ
αZ

Ns,α
α

: ð11Þ

where cα is the concentration of unbound monomer α, and Zα is the
partition function of the monomer (see “Methods—Deriving the equi-
librium yields” for a derivation). Note that Ns =∑αNs,α is the total
number of building blocks constituting structure s. The factors of V
cancel out with corresponding factors in the partition functions, such
that the concentration predictions are independent of system volume.

We find self-consistent solutions to these equations using the
fsolvepackage inscipy.optimize. The yield can thenbe calculated
directly from (2) using the concentrations.

Numerical results
Comparison to molecular dynamics simulations. We perform
numerical simulations to test the validity of (9). For simplicity, we
consider a system of building blocks that can only assemble to form
dimers in a uniqueway (see Fig. 2a). This allows us to non-ambiguously
define amonomeric and adimeric state and assign oneof them to each
structure we observe in the simulation, without having to worry about
multimeric formation.

We choose a geometry for the building blocks that ensures
rigidity of the dimeric state. Each monomer is composed of three
spheres rigidly bound to each other, which softly repel other mono-
mers’ spheres (see “Methods—Details of the pair potential”). Each
sphere is attached to a small colored patch (orange, cyan and purple).
There are two types of monomers that differ by how the patches are
arranged (left- and right-handed). A left-handed monomer binds to a
right-handed monomer with similarly-colored patches attracting (see
Methods). The presence of the three patches ensures the absence of
zero modes; if each building block had only one patch, a zero mode
would appear corresponding to the rotation of the monomers around
the axis connecting their centers of mass.

In order to compare the analytical theory to simulation most
directly, we operate in the canonical ensemble, where we can perform

�

�

Fig. 2 | Toy model for self-assembly of non-spherically symmetric building
blocks. a The two monomer types are shown; each colored patch of the first
monomer is attracted by the corresponding colored patch of the secondmonomer
by a Morse potential (see “Methods—Details of the pair potential”). The total
attractive potential of the cluster is givenby E0 = 3EbwhereEb is the strength of each
patch.bComparison between theoretical and simulation yield for the dimeric state
(when the two monomers are attached to each other). The number of building
blocks of each type is N1 =N2 = 9 and the volume of the system is V = 18, 000d3

where d = 1 is the diameter of the gray spheres. The interaction range was set to 8/
α = 8d/5. Error bars represent standard error over n = 10 simulations, where the
error is measured relative to the mean. The theoretical yield shown is computed in
the canonical ensemble (see Supplemental section E). All simulations were per-
formed in the HOOMD-blue simulation package33.
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exact calculations corresponding to finite sized simulations (see
“Methods—The yield in the canonical ensemble”). The comparison
between simulations and theory is shown in Fig. 2b. We also show the
predictions arising fromneglecting the contributions of entropy to the
partition function, with Zd=Zm = e3βEb . The result of Yd = Zd/(Zd + Zm) is
shown in brown, while a prediction accounting for finite concentra-
tions using Eqs. (10) and (11) is shown in orange. All simulations were
performed in the HOOMD-blue simulation package33.

We observe that the theory, when accounting for entropy, largely
agrees with the simulations, but there are small quantitative dis-
crepancies. Since the canonical ensemble calculates the yield exactly,
these deviations must stem from the computation of the configura-
tional partition function itself. Investigation reveals that the error
arises from Laplace’s approximation (7) which was based on the
assumption of small thermal energy compared to the cluster potential
energy (see Methods and Supplementary Fig. 2). This error decreases
with smaller interaction ranges which are often experimentally tun-
able, for example by changing ionic conditions for protein self-
assembly (Supplementary Fig. 3). This error can be almost completely
resolved by taking Laplace’s approximation to 4th order following
ref. 28. In what follows we do not implement calculations to this order,
but we emphasize that with the automatic differentiation tools, this is
an algorithmically and computationally efficient extension of the
present work.

Predicting protein complex yield. Our procedure for computing
yields can be applied to any heterogeneous self-assembled system,
provided that certain conceptual steps depicted in Fig. 1 are followed.
To illustrate this, we apply these methods to compute the interaction
energy- and concentration-dependent yields of protein complexes. As
a starting point, we need the structure of the protein complex as given
by a PDB file, and also a model of the energy of interactions between
contacting residues. To illustrate the approach, herewe use amodel of
interactions between protein complexes that is based on sequence
covariance information34, assigning a score to each pair of amino acids
corresponding to the probability and strength of contact. However we
emphasize that our algorithm could be usedwith anymodel of protein
interactions to predict yield curves, for example Rosetta35, AlphaFold36

or other methods37.
We begin by using the PDB file to define coarse-grained, rigid

building blocks: each amino acid in the protein is represented by a
sphere whose position is a non-weighted average of the positions of
the amino acid’s atoms. Similarly to Fig. 2a, the interface contacts
are defined by patches placed on the interface (see Fig. 1), subjected
to an attractive pair potential (see “Methods—Details of the pair
potential”). For example, if it is known that amino acid a belonging
to protein A forms a bond with amino acid b belonging to protein B
and their positions in the complex are (xa, ya, za) and (xb, yb, zb)
respectively, then a patch on each protein building block will be set
at position (xa + xb, ya + yb, za + zb)/2; these two patches specifically
attract one another. The interaction range is set at 8/α = 8d/2 where
d is the diameter of each sphere representing an amino acid. Since
the patches are defined so as to minimize energy, no additional
minimization procedure (e.g., simulation) is required to define the
ground state.

Here we consider two protein complexes with interactions that
were characterized by ref. 34: the Pyruvate formate lyase-activating
enzymecomplex (PFL) and the tripartite ATP-independent periplasmic
(TRAP) transporter. For each predicted contact b between building
blocks X and Y, we place a patch with an attractive potential EðbÞ

XY which
we assume is proportional to pðbÞ

XY , the probability of the contact b
found in ref. 34. EðbÞ

XY is therefore given by EðbÞ
XY = ϵp

ðbÞ
XY where ϵ is a

proportionality constant with units of kBT. Since we do not know a
priori what this proportionality constant ϵ should be, we treat ϵ as a
parameter we vary.

We first consider the PFL complex, composed of building blocksA
and B bound as a dimer. For this complex, following the findings in
ref. 34, we place 4 patches on each building block with relative
strengths determined by the sequence covariance (see Fig. 3a). We
compute the partition function for the monomeric and dimeric states
using (9), and thereby compute the yield in the grand-canonical
ensemble as a function of ϵ and the monomer concentrations. For
simplicity, we consider equal concentrations of both monomers. The
resulting yield curve is shown in Fig. 3: as expected, the dimeric
complex has a higher yield at higher concentrations. For example, for
ϵ ≈ 20 kBT (corresponding to energies of individual contacts ranging
from EðbÞ

AB =6 kBT to EðbÞ
AB =20 kBT) the model predicts self-assembly

(i.e., dimer yield >50%) for concentrations ≳10−5d−3 (~16.6mM).
We next apply our formalism to the TRAP complex, a trimer

comprised of three proteins referred to as M, N, and O. In order to
reduce the possibility of zero modes, we place 20 patches on each
interface; these patches and their strengths are chosen as the top 20
predicted contacts at each interface and their probabilities found by
ref. 34. We compute the partition functions of all possible structures:
the three monomers, the three dimers (MN, NO and MO), and the

Fig. 3 | Model and results for the PFL complex. a Coarse grained model for
proteins A (orange) and B (cyan) of the PFL complex. Left and right depict the
monomeric and the dimeric complexes, respectively. The residues highlighted at
the interface are the patches we put as contacts. The total strength of the AB
interface is EAB= ϵ pAB where pAB =

P
bp

ðbÞ
AB = 2:4 in the units of ref. 34 and ϵ is a

proportionality constant that converts between these units and kBT.b Plot showing
the yield curves of the dimeric state as a function of the energy. Different colors
correspond to different concentrations, here expressed inunits ofd−3 whered is the
diameter of each sphere representing an amino acid. Source data are provided as a
Source data file.
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trimer (MNO). We denote the total energy of the complex as
Etot = EMO + ENO+ EMN where EXY =

P
bE

ðbÞ
XY is the total energy of the

interface between building blocks X and Y. From our calculation, we
observe that there are three possible regimes (Fig. 4a, b): at weak
interaction energies (Etot≲ 50 kBT, corresponding to ϵ≲ 2 kBT) the
monomeric state is prevalent; at strong energies (Etot ≳ 130 kBT;
ϵ ≳ 5 kBT) the trimeric state is prevalent; and at intermediate energies
(Etot ~ 85 kBT; ϵ ~ 3.5 kBT) dimers of type MN form with high yield, while
O remains as amonomer. In termsof the yields, thismeans that atweak
energies, the monomers each form with yield 1/3; at intermediate
energies theMNdimer andOmonomer each formwith yield 1/2; and at
strong energies the MNO trimer forms with yield 1 (Supplemen-
tary Fig. 4).

We now consider the scenario where the interface contacts (hence
the interface energies) can be modified, for example through
mutagenesis38–40.We apply ourmodel to amodified versionof theTRAP
complex where we let the relative energy of the MN and MO interfaces
varywhile keeping the overall energy Etot constant.We defineDX to be a
measure of the relative strength between these interfaces such that
Etot =DXEMO + ENO+DZEMN where DZ is defined such that Etot is kept
constant for each independently varied DX. A plot of the relative con-
centrations as a function ofDX are shown in Fig. 4c, wherewe have used
ϵ =4 kBT and a concentration of c = 10−5d−3 for all monomers. The point
DX= 1 corresponds therefore to the point ϵ = 4 kBT in Fig. 4b, where the
dimers MN and the monomer O have the highest yield. As we increase
DX and concurrently decreaseDZ, wefirst observe the appearance of the
trimeric state, and then, at DX ~ 7, an additional transition towards a
state where the dimers MO and the monomer N are prevalent. This
result illustrates the predictive power of our method, that allows us to
compute the yield of a complex where the energy of the interfaces, and
even those of the individual contacts, can be modified at will.

The yield of spherical cages. Finally, we show that our algorithm can
beused to efficiently compute the yieldofmorecomplicated complex-
forming systems, such as cages. The robust and predictable self-
assembly of proteins or molecules into cages or shells plays a major
role in many medical applications, from multivalent antigen
presentation41–43 to gene delivery vectors44. A meaningful yield land-
scape can be obtained provided than the enumeration step of our
method is performed carefully, by taking into account the physics and
biochemistry of the system under study.

Wepresent a notional example of such an assembly, in an effort to
demonstrate how this formalism works. We consider a cage of radius
R = 1 that is assembled out of 60 spherical building blocks with icosa-
hedral symmetry. We use a set of previously reported coordinates to
define the ground state of each assembly45. All spheres are identical
and interact via a smoothed Morse potential (see “Methods—The
Jacobian of a dimer with rotational degrees of freedom”) which is
isotropic, so that they do not experience any rotational constraint. We
set the attractive potential between spheres to a constant Eb = ϵ. The
minimum and cutoff for each pair of spheres are set at their nearest
neighbor distance r0 = 0.46R, and rcut = 0.75R, respectively. Because
the spheres interact with an isotropic potential, it was not necessary to
use (8) to calculate the rotational partition function, and we instead
calculate this rotational component from themoments of inertia17. We
consider an instance of each N-mer (from monomer to 60-mer, see
Fig. 5a) where each (N + 1)-mer is created by adding one building block
to the N-mer. Such building block is chosen at random, with the only
constraint that it forms at least 2 bonds with the spheres already pre-
sent in the N-mer, to maximize the cluster’s rigidity.

We predict the yield curves of these N-mers for different con-
centrations (in units of R−3) and interaction energies. We observe a
smooth transition from a monomeric state to a 60-meric state as the
concentration and the interaction energy increase (see Fig. 5b),
whereas the yield of the intermediate states (from dimer to 59-mer)

Fig. 4 | Model and results for the TRAP complex. a Coarse grained model for
proteinsM (purple), N (cyan) andO (orange) of the TRAP complex. Left, center and
right depict the monomeric, the MN dimeric and the trimeric complexes, respec-
tively. The total strengths of the three interfaces are pMN= 15.7, pMO= 1.9 and
pNO = 6.7. b We show the concentrations of the three structures which include the
building block M as a function of the interaction energy. The concentrations are
normalized by the total input concentration of M, ctotM , which was set equal to the
input concentration of the other two monomers. Different colors correspond to
different total concentrations ctotM (in units of d−3). When the temperature is
appropriately tuned, we observe an intermediate state between the formation of
only monomers and only trimers, corresponding to high yield of the dimer MN.
cThe relative concentrations ofmonomersM, dimersMN andMO and trimerMNO
are reported for different values of DX (see main text) with fixed ϵ = 4 kBT and total
concentration of monomers ctotM = 10�5d�3. Source data are provided as a Source
data file.
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always stays low, with a highest value—across all intermediates, all
concentrations and all energies—of 8.2 × 10−4.

Discussion
Many structural and functional properties of biological systems rely on
heterogeneous self assembly. Increasingly, building blocks with highly
tuned geometries and interactions can be made experimentally, pre-
senting an opportunity to design complex self-assembling systems
with properties of living matter46–48. However, for increasing numbers
of individual components, the yield of thedesiredproduct is dilutedby
an exponential number of off-target assemblies. Even if each of the off-
target assemblies forms with a lower probability than the desired
product, the multiplicity of these off-target assemblies can cause a
yield catastrophe in which the desired product forms with negligible
yield49. An efficientmethod for predicting assembly yieldwould enable
practitioners to design self-assembling systems of increasing com-
plexity while mitigating this yield catastrophe.

In this work, we have developed a combined analytical/compu-
tational approach to calculate the equilibrium assembly yields of

complexes comprised of heterogeneous building blocks with arbitrary
geometries. Our approach involves two novel calculations: (i) com-
puting the partition function of each (predefined) candidate complex
(see Eq. (9)) and (ii) given these partition functions, calculating equi-
librium assembly yields (see Eqs. (10) and (11)). The classical statistical
mechanics methodology we put forth can be realized by modern
automatic differentiation techniques enabled by advances in machine
learning21. While previously, the efficient calculation of the entropic
parts of the partition function has been intractable except for simple
cases, these advances make this calculation possible even for struc-
tures with complicated building blocks or with a large number of dif-
ferent components.

Our theoretical framework provides significant conceptual and
practical improvements over simulation-based methods, the only
other general-purpose method for yield prediction. Calculations via
our approach require a drastically reduced computational cost com-
pared to simulations (i.e., seconds or minutes vs. hours, weeks, or
months). Moreover, simulation-based methods can be fraught with
additional difficulties such as issues in simulating finite concentrations
or efficiently sampling from equilibrium distributions50. Lastly, since
our method involves the direct calculation of the partition function,
our approach can also be used to compute other statistical properties
of an equilibrium thermodynamic system (e.g., heat capacity, energy
fluctuations) without complicated modifications to the calculation.
Indeed, since the gradient of a solution to Eqs. (10) and (11) can be
computed implicitly51, our method could enable inverse design with
respect to related thermodynamic equilibrium properties.

We have demonstrated the validity of this model’s approxima-
tions by comparison to molecular dynamics simulations, where we
found that precise agreement between the simulations and the ana-
lytical calculations requires paying close attention to higher order
corrections to the Laplace approximations. We have also applied our
methodology to two illustrative protein complexes (PFL and TRAP), as
well as a simple example of a cage-forming system.We emphasize that
our method can be applied to arbitrary proteins complexes so long as
we know how to construct the building blocks, calculate the energies
of contacts, and enumerate the most likely structures. The latter is in
principle a difficult problem: enumerating all possible combinations of
building blocks can become infeasible for complexes comprised of
large numbers of building blocks.

We next plan to apply thismethod to self-assembling systems that
are the subject of active study, such as de novo designed proteins and
viral capsids52. In fact, when designing de novo protein complexes,
significant care must be taken to mitigate the self-assembly of off-
target structures49. To address this problem in silico, ourmodel can be
combinedwith state-of-the-art protein structure prediction and a suite
of existing energy functions for describing protein-protein
interactions53–55.

Finally, as we have described, we have restricted our calculations
to equilibrium systems. However, biological systems frequently make
use of non-equilibrium control elements, including the regulation of
the production machinery for the assembled components, as well as
other control elements that are not yet available in synthetic systems
such as allosteric interactions. These control knobs providemoreways
of regulating energetic and entropic interactions leading to self
assembly. Future work may seek to provide an understanding of how
these control elements contribute to high self-assembly yields, and
thus test which would be most effective to prioritize developing in a
synthetic context.

Methods
Deriving the equilibrium yields
We consider a system composed of N building blocks with short range
interactions. Each building block i has three translational degrees of
freedom ðqix ,qiy, qizÞ= q!i and three rotational ones, represented by

�

�

Fig. 5 | The yield of spherical cages. a An instance of each N-mer, frommonomer
(dashed square) to 60-mer (full square). Each pair of spheres interacts via a
smoothed Morse potential with parameters α = 5R−1, r0 = 0.46R, rcut = 0.75R, where
R is the radius of the full cage. For each intermediate, the total energy is equal to the
sum of the pair potentials of all pairs of spheres, multiplied by the prefactor ϵ.
b Yield curves for monomers and 60-mers at different concentrations (in units of
R−3). No intermediate state was prevalent within the observed parameters range.
Source data are provided as a Source data file.
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the three Euler angles ðφi, θi,ψiÞ= ϕ
!

i. The potential energy of the
systemUðf x!gÞ, where x!i = ð q!i,ϕ

!
iÞ, is then a functionof6Ndegreesof

freedom. The overdamped Langevin equation that describes the
dynamics of these 6N variables reads

_
x!= � 1

γ
∇
!

U x!
n o� �

+
ffiffiffiffiffiffi
2D

p
η
!ðtÞ: ð12Þ

Here, γ is the friction coefficient; D = (βγ)−1 is the diffusion coefficient;
β = 1/kBT where kB is the Boltzmann constant and T is the temperature
of the system; and η(t) is a 6N-dimensional Gaussian noise vector such
that hηiðtÞηjðt0Þi= δijδðt � t0Þ. The corresponding Fokker-Planck equa-
tion for the probability Pðf x!g, tÞ reads

_P =
1
γ
∇
!

∇
!

U
� �

P
h i

+D∇
!2

P, ð13Þ

where we have dropped the x! and t dependencies to lighten the
notation. The steady state probability P⋆ of the system existing in a
particular phase space configuration, found by setting _P =0, is

P? x!
n o� �

=Z�1e
�βU x!

n o� �
ð14Þ

where Z�1 is a normalization factor.
The total probability of Ns ≤ N building blocks all belonging to

the same cluster s is given by the integral of P⋆ over a phase volume
Ωs, corresponding to the region of phase space where the cluster is
defined. This volume includes all fluctuations that keep the identity
of the cluster unchanged. We write this total probability as Zs=Z,
where Zs is the configurational partition function of the cluster s,
defined as

Zs =
1
σs

Z
Ωs

YNs

i= 1

d3 q!i

λ3i
d3 ϕ

!
i

 !
e�βEs ðf q

!
,ϕ
!

gÞ: ð15Þ

where Es is the potential that applies to cluster s. Equation (15) intro-
duces the symmetry number σs, which accounts for all possible com-
binations of rotations and building block permutations that result in
the same cluster s24. We also introduce the normalization parameter λi,
whichhasunits of length, so that the configurational partition function
Zs is unitless. The values of the λi’s cancel out of any equation
describing the classical physical observables considered here56.

The grand canonical yield
Here, we are interested infinding an analytical definition of the yield of
a cluster based solely on its structural details, which are encoded in its
partition function Zs. In particular, the yield is proportional to the
partition function: Ys / Zs. To compute the proportionality factor, we
need to make a choice of how to describe the system of building
blocks. In other words, we need to define an ensemble.

A natural choice is the grand canonical ensemble. In the grand
canonical ensemble, the number of building blocks n in the system is
not fixed, but the concentrations of each monomer species are. The
grand partition function Q of the system is then the sum over all
microstates with a given number of building blocks25. In our case, a
microstate corresponds to a cluster s with Ns building blocks:

Q=
X
s

Qs

Qs =
Y
α

eβμαNs,α

 !
Zs ,

ð16Þ

where μα is the chemical potential of building blocks of species α and
Ns,α is the number of α building blocks in cluster s.

In our grand canonical definition, the yield Ys of cluster formed by
Ns building blocks can then be defined as

Ys =

Q
αe

βμαNs,α
� �Zs

Q : ð17Þ

A practical way to compute the yield defined in (17) is to express it
in termsof the concentrations cαof thedifferent buildingblock species
rather than their chemical potentials μα. For point particles, these are
related by cα = e

βμα=λ3α
25.

For non-point particles, monomers generally have free energy
ΔGα. In the systems we consider here, this free energy arises from
rotational degrees of freedom, such that e�βΔGα =

R
d3 ϕ

!
i 1. More

generally, such a free energy can also arise from multiple conforma-
tions allowed to a protein, from internal secondary structure of anRNA
molecule, from energetic sources such as interactions between a
monomer and solvent, or from other factors. For such a monomer, its
chemical potential is related to its concentration by cα = e

βμαe�βΔGα=λ3α .
We can therefore define a normalized concentration ~cα = cαe

βΔGα , so
that ~cα = e

βμα=λ3α . We use this definition to rewrite (17) as

Ys =

Q
α
~cNs,α
α

� �
Zs

Q , ð18Þ

where

Zs =
1
σs

Z
Ωs

YNs

i = 1

d3 q!id
3 ϕ
!

i

 !
e
�βEs q!,ϕ

!n o� �
ð19Þ

is the unnormalized configurational partition function (without the
normalizing factors of λ). This equation is identical to (1). With this
equation, we can recognize another way to equate the normalized
monomer concentrations ~cα to the true concentration cα:

~cα = cαe
βΔGα = cα

V
Zα

, ð20Þ

where Zα is the partition function of the monomer defined using (1).

Deriving the self-consistent equations to solve
While the monomer conservation laws (10) are perhaps self-evident,
(11) may benefit from further discussion. A useful starting point is that
the ratio of the equilibrium concentrations of two species is equivalent
to the ratio of their yields.We can consider one of these species to be a
non-monomeric structure s, and the other to be a monomeric struc-
ture α. Using the definition of yield (3) and of normalized concentra-
tions (20), we can write this equality as

cs
cα

=
Ys

Y α

=
Qs

Qα

=
Zs
Q

α0~c
Ns,α
α0

Zα~cα

=
Zs
Q

α0
V
Zα0

cα0

� �Ns,α

Zα
V
Zα

cα
:

ð21Þ

This equation leads us directly to the equality ns � Vcs =Qs.
Furthermore, by moving all partition functions to one side of the
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equality and all concentrations to the other, we arrive at

csQ
αc

Ns,α
α

=
Zs=VQ

α Zα=V
� �Ns,α

: ð22Þ

which is equivalent to (11).
An alternative derivation can be constructed following a free

energy based analysis used in ref. 57 (specifically Eqs. 16 and 17 of that
work). The normalized free energy of the system can be written as

βF =V
X
s

βcs f s + cs log
Vcs
e

� �	 

ð23Þ

where fs is the free energy of structure s, and the last term is themixing
entropy. In equilibrium, the system finds a free energy minimum
subject to conservation laws for eachmonomeric species α, which can
be solved for using Lagrange multipliers, which we label as βVμα:

0 =
∂ βF � βV

P
αμα

P
s0cs0Ns0 ,α � ctotα

� �� �
∂cs

=βVf s +V log Vcs
� �� βV

X
α

μαNs,α :
ð24Þ

Solving for cs yields

Vcs = e
�βf s

Y
α

eβμαNs,α : ð25Þ

To solve for the Lagrange multipliers μα, we consider the monomeric
structures α, for which (25) simplifies to

eβμα =
Vcα
e�βf α

: ð26Þ

Plugging back into (25), we arrive at

Vcs = e
�βf s

Y
α

Vcα
e�βf α

� �Ns,α

, ð27Þ

which, after substituting partition functions for free energies, is
equivalent to (11).

The Jacobian of a dimer with rotational degrees of freedom
Let us consider a 2D building block formed by a sphere of radius awith
two patches at position ða cosðϕÞ,a sinðϕÞÞ and ða cosðϕÞ,� a sinðϕÞÞ,
corresponding to the orange and cyan patches, respectively, shown in
Supplementary Fig. 1. Patches of different colors interact with an
attractive potential U(r) = k/2r2, where r is the distance between the
patches. Each monomer can be described by two Cartesian coordi-
nates and one angle (orientation), so that a dimer can be described by
the coordinates of the two monomers that form it:
ð r!1, r

!
2Þ= ðx1, y1,θ1; x2, y2,θ2Þ. In the cluster’s center of mass refer-

ence frame, the dimer is described by ν = (xc, yc, θ, q1, q2, q3), where
(xc, yc) are the global translations,θ is the global rotation and (q1, q2, q3)
are the three internal vibrations. We construct f as described in (5) and
calculate the Jacobian at qi = 0:

J =2
ffiffiffi
2

p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ðϕÞ2 + 1

q
: ð28Þ

We note that for the same exact system but without the patches and
without the rotational degrees of freedom, the Jacobian is
J =2

ffiffiffi
2

p
a cosðϕÞ=4

ffiffi
I

p
where I is the moment of iner-

tia I =
P

ij r
!

i � r!cj2.

Computing the partition function with automatic
differentiation
The Hessian. Calculating the Hessian of Eð ξ!Þ is a standard practice
and it can be done by hand, if the energy function is simple enough, or
numerically, for instance using finite difference methods. In the first
case, for each and every system under study, the Hessian will have to
be recalculated to account for the system’s specific potential; in the
second case, numerical differentiation introduces truncation and
roundoff errors that cannot be eliminated. The automatic differentia-
tion tools in JAX can compute derivatives of any order of any function
with machine accuracy and without the need to change the code if a
different potential energy function is used58.

The Jacobian. The function f introduced in the main text Eq. (5) is
highly nontrivial for 3D structures composed of an arbitrary number of
components. However, calculating its partial derivatives to obtain the
Jacobian of the transformation (Eq. (4) in the main text) is fairly easy
thanks to the function jax.jacfwd(f), evaluated at a given set
of ð q!c,ϕ

!
c, ξ
!Þ.

Details of the pair potential
For the systems considered, the individual monomers interact via a
pair potential. The attractive part of the pair potential, governing the
interactions of same-colored patches on different building blocks, is:

EðrÞ= Eb e�2αr � 2e�αr� �
SðrÞ,

with SðrÞ=
1 if r < ron
ðr2cut�r2Þ2ðr2cut + 2r2�3r2onÞ

ðr2cut�r2onÞ
3 if ron < r < rcut

0 if r > rcut

8>><
>>:

ð29Þ

where ron was set to 0 throughout, and the interaction range rcut to 8/α
unless specified otherwise. The minimum free energy of each pair
potential is thus −Eb, at a separation of r = 0 between the patches. For
the cage system, we use a more general form of (29) where we sub-
stitute r with r − r0, with r0 the distance of the nearest neighboring
spheres.

The monomers also include soft repulsive interactions to avoid
overlaps. These interactions govern the body of the monomers (i.e.,
not the patches) and are given by:

HðrÞ= A
2:5d

ðd � rÞ2:5 ð30Þ

where we use A = 500 (in units of [energy]/[distance]1.5) throughout
and d is the diameter of the spheres that constitute the building blocks
in our coarse-grained models. α was set to 2/d or 5/d for different
systems as described in the main text.

The yield in the canonical ensemble
The grand canonical ensemble is natural to large protein systems;
however, it introduces errors for finite systems. In order to compare
our theory to finite-sized molecular dynamics simulation, we use the
canonical ensemble. In this ensemble, we specify the numbers ni of
each building block type i in our system. These building blocks can
bind to one another to form a configuration of clusters {c}, containing
Na clusters of type a, each containingNa,i building blocks of type i. The
sets of clusters that can form are therefore restricted such that

X
a2fcg

NaNa,i =ni: ð31Þ
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The unnormalized probability weight p{c} of a given set of clusters
{c} forming reads

pfcg =Mfcg Y
Na2fcg

Za

� �Na ð32Þ

whereM{c} is a combinatorial coefficient that describes the number of
ways of permuting the individual buildingblocks to arrive at {c}, andZa

is the partition function introduced in (15).
The normalized probability – which can be read as the yield – of

configuration {c} is then

Pfcg =
pfcgP
fcg0pfcg0 ð33Þ

where fcg0 are all possible configurations given a fixed set of building
blocks. (31) ensures that the λ terms in Za cancel with one another in
this equation.

The yield of a specific cluster s in the canonical ensemble is then
defined as

YC
s =

X
fcg

Nfcg
sP

s0N
fcg
s0

Pfcg ð34Þ

where Nfcg
s represents the number of clusters of type s in configura-

tion {c}.
For a system comprised of only dimers and monomers, the con-

figuration {c} is uniquely determined by the number of dimers in the
system. If there are a total of Nb black building blocks and Nw white
building blocks, which dimerize to form Nd dimers,M{c} is given by

Mfcg
dimer system =

Nb

Nd

� �
Nw

Nd

� �
Nd ! ð35Þ

Comparison for exactly solvable system
In order to test whether Laplace’s approximation is at the root of the
discrepancy between theory and simulations, we need to be able to
calculate Zs exactly, that is, without the help of Laplace’s approxima-
tion. We therefore consider a simpler system shown in Supplementary
Fig. 2A, with clusters that are rotationally invariant: a spherical black
monomer is attracted to a spherical white monomer, and they form a
spherical gray dimer when their centers of mass coincide, with no
excluded volume effect. The configurational partition function of such
a dimer is a simple integral over a sphere.

In Supplementary Fig. 2 we compare the yield calculated with the
exact Zs and the one calculatedwith Laplace’s approximation (detailed
derivation to follow). While the former shows excellent agreement
with the simulation, Laplace’s approximation introduces errors quali-
tatively and quantitatively similar to those observed in the non-
rotationally-invariant system (Fig. 2). Furthermore, we verify that
extending Laplace’s approximation to a higher order (4th order) gives
a result in between the two. Thus, we confirm that Laplace’s approx-
imation is responsible for a systematic discrepancy with simulations.

The exact and approximated calculations for spherical dimers
In this sub-section we describe the calculation portrayed in Supple-
mentary Fig. 2 in more detail. The system in question consists of N1

black spheres and N2 white spheres. Spheres of like color repel, while
spheres of opposite color attract, such that in addition to the two
monomer species, a dimer species consisting of overlapping black and
white spheres can form.

Because of the simplicity of the system, Zs can be exactly calcu-
lated for both the monomer species and the dimer. We start from (1),
where for the dimer species Esdescribes the attraction between a black

andwhite sphere (for themonomers,Es is zero). As described in (29), Es
is a function only of the distance between the centers of the two
spheres; the two spheres in the dimer have the same rotational free-
dom enjoyed by monomers. Therefore, the contribution of rotational
degrees of freedom to the partition function will cancel out in equa-
tions representing physical observables (34)much like how factors of λ
cancel out. Our quantity of interest is therefore

Zdimer

Z 1Z2
=

R
d3q1

!d3q2
!e

�βUdimer q1
!�q2

!� �
V 2

ð36Þ

where Z1 and Z2 are the partition functions of the two monomers.
By changing to COM coordinates (qi

!= q1
!� q2

! and
q!COM = q1

!+ q2
!

=2), and rewriting our system in spherical coordinates,
we find the exact solution

Zdimer

Z 1Z2
=
4π
R
r2e�βUðrÞdr
V

ð37Þ

whereU(r) is the attractive potential rewritten in spherical coordinates
as in (29).

Our ultimate goal, however, is to determine the error introduced
by Laplace’s approximation. We now therefore rewrite the system
following theprotocol outlined in themain text. Insteadof changing to
spherical coordinates, we expand Udimerðqi

!Þ to second order. Letting
qi = jqi

!j,

Udimerðqi!Þ= � E0 + E0α
2q2i +Oðq3i Þ: ð38Þ

Here, E0 is given by Eb since there is only one pair potential defining
each dimer.

We then integrate this quadratic form over all of space. The
eigenvalues of the Hessian are all w2

i =2E0α
2, yielding

Zdimer

Z 1Z2
≈

eβE0π3=2

ðβE0Þ3=2α3V
ðLaplace0s approximationÞ: ð39Þ

While the error from Laplace’s approximation in Udimerðqi!Þ itself
can be quite significant (at ~40% even for βE0 = 30), the error in the
resulting yield estimate is much less severe, as seen in Supplementary
Fig. 2. The error in both the energy function and the yield go down
significantly as more terms are taken in the expansion. The fourth
order result shown in Supplementary Fig. 2 is a result of numerical
integration of

Udimerðqi
!Þ= E0 �1 +α2q2

i � α3q3
i +

7177
12288

α4q4
i

� �
+O q5i
� �

: ð40Þ

The error due to Laplace’s approximation decreases for shorter
interaction ranges
As seen in Supplementary Fig. 2, taking Laplace’s approximation to
second order appears to shift the yield curve to the right compared to
the exact calculation. This effect can be quantified for different system
conditions bymeasuring the value of E0 leading to a dimer yield of 1/2.
We call this value E1/2. In Supplementary Fig. 3 we examine the error in
the estimate of E1/2 using Laplace’s approximation to 2nd order as a
function of the interaction range of the spheres (8/α) normalized by
the building block diameter d. Experimentally, the interaction range is
often tunable, for example by changing ionic conditions for protein
self-assembly. We find that as expected, the error increases with the
interaction range, and especially grows rapidly for interaction ranges
larger than the diameter of the spheres.
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To perform this comparison we used the same system conditions
as in Supplementary Fig. 2, except that in order to ensure that the
interaction range remains significantly smaller than the system size, we
increased the volume of the system by two orders of magnitude to
1.8 × 106d3. When not performing this modification to the system
conditions, a qualitatively similar curve is found, except that the error
shows a dramatic spike for large interaction ranges, especially as the
range approaches the system size. The error for small interaction
ranges is largely unchanged; for example, for normalized interaction
ranges ~10−2 it is increased by <10% compared to that shown in Sup-
plementary Fig. 3.

The grand canonical ensemble error for finite systems
While we have used the canonical ensemble to compare our results
directly to simulations, most experimental systems are best modeled
using the grand canonical (GC) ensemble. What errors are introduced
by applying the GC ensemble to finite systems? We consider the
spherically symmetric dimer system (Supplementary Fig. 2A) as a
case study.

Equation (11) requires us to solve for the ratio of the dimer par-
tition function to the twomonomer partition functions. This result was
already found in Eq. (37).Wedenote 4π∫ r2e−βU(r)drbyVint for clarity, and
let ctotb be the total concentration of blackmonomers (and similarly for
white monomers). We let q denote the combination of factors
V int ctotb + ctotw

� �
+ 1. We find that the self-consistent solution to Eqs. (10)

and (11) leads to a yield of dimers given by

YGC
d =

cd
cb + cw + cd

=
q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4V 2

intc
tot
b ctotw

q
q� 2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4V 2

intc
tot
b ctotw

q :

ð41Þ

where cd is the concentration of dimers, and cb and cw are the con-
centrations of free black and white monomers, respectively.

In Supplementary Fig. 5, we compare the result of this self-
consistent solution to the result of the exact canonical ensemble cal-
culation considered previously. We place Nm monomers of each kind,
with an attractive potential E0 = 16 (in units of kBT) and with an inter-
action range of 8/α = 8d/5. We vary Nm and consider two cases for the
volume of the system: either a constant volume (of 18,000d3 as pre-
viously; panel a) or a constant building block density (of 10−3d−3 as
previously; panel b). In both cases, we find that the result of the GC
calculation approaches the exact canonical yield as the number of
building blocks grows, and does so with a power-law scaling, in
agreement with previously published results30. While in the grand
canonical ensemble, the volume of the system only enters through the
concentrations (e.g., ctotb =Nm=V in Eq. (41)) the canonical ensemble
yield changes as a function of system volume for constant densities,
and approaches the grand canonical ensemble prediction in the
thermodynamic limit.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper23, with a highly permissible
Apache 2.0 license. See https://doi.org/10.5281/zenodo.8355118.

Code availability
The code used to carry out this study have been deposited in the
github repository23, with a highly permissible Apache 2.0 license. We
have written the code so that the data underlying the Figs. 2–5 can be
reproduced by running the underlying code. See https://doi.org/10.
5281/zenodo.8355118.
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FIG. 1. Simple 2D model for self-assembly of building
blocks with rotational degrees of freedom. The two
identical monomers form a dimer when the orange and cyan
patches overlap.
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FIG. 2. Simple model for self-assembly of two spheres
in a spherical dimer. A: The black and white monomers
are simple spheres that attract each other until they overlap to
form a spherical dimer. B: Comparison between exact theory,
Laplace’s approximation (LA), extension to the 4th order and
simulation yield. A total of 18 building blocks (N1 = N2 = 9)
were considered in a volume V = 18 000 d3 where d = 1 is the
sphere diameter. Error bars show standard error across 100
replicates. All simulations were performed in the HOOMD-
blue simulation package [? ]. The theoretical yield shown is
computed in the canonical ensemble (see SI).
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FIG. 3. Scaling of error with interaction range. The
error due to taking Laplace’s approximation to 2nd order can
be quantified by measuring E1/2, the value of E0 leading to a
dimer yield of 1/2. Here we show this error for different nor-
malized interaction ranges 8/αd. We consider the same sys-
tem conditions as in Fig. 2 except here we consider a volume
two orders of magnitude larger. The error is relatively small
(∼ kBT/2) for short interaction ranges but grows rapidly for
interaction ranges greater than the sphere diameter.

FIG. 4. Individual cluster yields for the TRAP com-
plex. We show the yields of the different structures that can
form for the system shown in Fig. ??A as a function of ϵ, when
the input concentrations are ctotM = ctotN = ctotO = 10−5d−3.
The yields of the M and N monomers are almost identical;
the former is obscured by the latter in the figure. The yields
of the MO and NO dimers are approximately zero for all ϵ
and are not shown. At weak interaction energies (low ϵ), the
three dimers all form with yield 1/3. At intermediate ener-
gies, the MN dimer and O monomer each have yield 1/2. At
strong energies (high ϵ), the MNO trimer forms with yield 1.
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FIG. 5. Grand canonical ensemble error for finite sys-
tem sizes. We consider the same simple dimer system as
in Fig. 2A and compare the yields predicted by the canon-
ical and grand canonical (GC) ensembles for different finite
system sizes. We place Nm monomers of each kind, with an
attractive potential E0 = 16 (in units of kBT ) and with an
interaction range of 8/α = 8d/5. We vary Nm (x-axis) and
consider two cases for the volume of the system. A: Volume
is kept constant at 18, 000d3 for different values of Nm. B:
building block density is kept constant at 10−3d−3. We plot
the relative error in the grand canonical ensemble estimate of
the yield of the dimers, defined as (YC −YGC)/YC where YGC

is the yield as predicted by the grand canonical ensemble, and
YC is the yield predicted by the canonical ensemble. We find
that this error decreases as a power law as the number of
building blocks increases.


